Spaces:
Build error
Build error
from langchain.agents import Tool, AgentType, initialize_agent | |
from langchain.memory import ConversationBufferMemory | |
# from langchain.utilities import DuckDuckGoSearchAPIWrapper | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain.agents import AgentExecutor | |
from langchain import hub | |
from langchain.agents.format_scratchpad import format_log_to_str | |
from langchain.agents.output_parsers import ReActSingleInputOutputParser | |
from langchain.tools.render import render_text_description | |
import os | |
from tools.kg_search import lookup_kg | |
from tools.tavily_search import tavily_search | |
from tools.tavily_search_v2 import tavily_search, tavily_qna_search | |
from dotenv import load_dotenv | |
from langchain.agents import Tool | |
from langchain_core.prompts import PromptTemplate | |
load_dotenv() | |
os.environ["GOOGLE_API_KEY"] = os.getenv("GEMINI_API_KEY") | |
llm = ChatGoogleGenerativeAI( | |
model= "gemini-1.5-flash-latest", | |
temperature = 0 | |
) | |
# search = DuckDuckGoSearchAPIWrapper() | |
# | |
# search_tool = Tool(name="Current Search", | |
# func=search.run, | |
# description="Useful when you need to answer questions about detail jobs information or search a job." | |
# ) | |
kg_query = Tool( | |
name = 'Query Knowledge Graph', | |
func = lookup_kg, | |
description='Useful for when you need to answer questions about job posts.' | |
) | |
web_search = Tool( | |
name = 'Web Search', | |
func = tavily_qna_search, | |
description = "Useful for when you need to search for external information." | |
) | |
tools = [kg_query, web_search] | |
with open("prompts/react_prompt_v2.txt", "r") as file: | |
react_template = file.read() | |
react_prompt = PromptTemplate( | |
input_variables = ["tools", "tool_names", "input", "agent_scratchpad", "chat_history"], | |
template = react_template | |
) | |
prompt = react_prompt.partial( | |
tools = render_text_description(tools), | |
tool_names = ", ".join([t.name for t in tools]), | |
) | |
llm_with_stop = llm.bind(stop=["\nObservation"]) | |
agent = ( | |
{ | |
"input": lambda x: x["input"], | |
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]), | |
"chat_history": lambda x: x["chat_history"], | |
} | |
| prompt | |
| llm_with_stop | |
| ReActSingleInputOutputParser() | |
) | |
memory = ConversationBufferMemory(memory_key="chat_history") | |
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, memory=memory) | |
def get_react_agent(memory): | |
agent_executor = AgentExecutor( | |
agent=agent, | |
tools=tools, | |
verbose=True, | |
memory=memory | |
) | |
return agent_executor | |
# result = agent_executor.invoke({"input": "Have any company recruit Machine Learning jobs?"}) | |
# print(result) | |
# result = agent_chain.run(input = "Have any company recruit Machine Learning jobs?") | |
# print(result) | |
# question = { | |
# "input": "What did I just ask?" | |
# } | |
# | |
# result = agent_executor.invoke(question) | |
# print(result) | |
# if __name__ == "__main__": | |
# while True: | |
# try: | |
# question = input("> ") | |
# result = agent_executor.invoke({ | |
# "input": question | |
# }) | |
# except: | |
# break | |