import gradio as gr from huggingface_hub import InferenceClient import PyPDF2 import os # Initialisation du modèle Hugging Face client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Messages système pour guider le modèle SYSTEM_PROMPT = { "fr": "Tu es un assistant pédagogique qui aide les professeurs à créer des cours et analyser des documents PDF.", "en": "You are an educational assistant helping teachers create courses and analyze PDF documents." } # 📄 Fonction pour extraire le texte d'un PDF def extract_text_from_pdf(pdf_path): text = "" try: with open(pdf_path, "rb") as f: reader = PyPDF2.PdfReader(f) for page in reader.pages: if page.extract_text(): text += page.extract_text() + "\n" return text if text else "Impossible d'extraire du texte de ce PDF." except Exception as e: return f"Erreur lors de la lecture du PDF : {str(e)}" # 🧠 Fonction du chatbot + PDF RAG def generate_response(subject, history, lang, pdf_path, max_tokens, temperature, top_p): system_message = SYSTEM_PROMPT.get(lang, SYSTEM_PROMPT["en"]) # Sélection de la langue # Initialize messages with the system message messages = [{"role": "system", "content": system_message}] # 🔄 Correct format for history messages for message in history: if isinstance(message, dict) and "role" in message and "content" in message: messages.append(message) # 📄 Add PDF content if available if pdf_path: pdf_text = extract_text_from_pdf(pdf_path) messages.append({"role": "user", "content": f"Voici un document PDF pertinent : {pdf_text[:1000]}..."}) # Limit to first 1000 characters # Add user's request to create a course messages.append({"role": "user", "content": f"Crée un cours sur : {subject}"}) # 🔥 Stream response from HuggingFace model response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p ): token = message.choices[0].delta.content response += token yield response # 🎨 Interface utilisateur Gradio with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 🎓 Teacher Assistant Chatbot avec PDF RAG") with gr.Row(): subject_input = gr.Textbox(label="📌 Sujet du cours", placeholder="Ex: Apprentissage automatique") lang_select = gr.Dropdown(choices=["fr", "en"], value="fr", label="🌍 Langue") pdf_upload = gr.File(label="📄 Télécharger un PDF (optionnel)", type="filepath") # ✅ Correction ici chat = gr.Chatbot(type="messages") # ✅ Correction du format des messages with gr.Row(): max_tokens = gr.Slider(minimum=100, maximum=2048, value=512, step=1, label="📝 Max tokens") temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="🔥 Température") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="🎯 Top-p") generate_button = gr.Button("🚀 Générer le cours") generate_button.click( generate_response, inputs=[subject_input, chat, lang_select, pdf_upload, max_tokens, temperature, top_p], outputs=chat ) # 🔥 Lancer l'application if __name__ == "__main__": demo.launch()