leaderboard / src /backend /run_eval_suite.py
pminervini's picture
update
669da77
raw
history blame
1.22 kB
from lm_eval import tasks, evaluator, utils
from src.backend.manage_requests import EvalRequest
import logging
logging.getLogger("openai").setLevel(logging.WARNING)
def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, no_cache=True, limit=None) -> dict:
if limit:
print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
print(f"Selected Tasks: {task_names}")
results = evaluator.simple_evaluate(model="hf-causal-experimental", # "hf-causal"
model_args=eval_request.get_model_args(),
tasks=task_names, num_fewshot=num_fewshot,
batch_size=batch_size, device=device, no_cache=no_cache,
limit=limit, write_out=True, output_base_path="logs")
results["config"]["model_dtype"] = eval_request.precision
results["config"]["model_name"] = eval_request.model
results["config"]["model_sha"] = eval_request.revision
print(evaluator.make_table(results))
return results