Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
pminervini
commited on
Commit
·
4c2b065
1
Parent(s):
b1a5839
update
Browse files- completed-cli.py +80 -0
- src/backend/envs.py +2 -2
completed-cli.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from huggingface_hub import snapshot_download
|
4 |
+
|
5 |
+
from src.backend.manage_requests import get_eval_requests
|
6 |
+
from src.backend.sort_queue import sort_models_by_priority
|
7 |
+
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND
|
8 |
+
|
9 |
+
from src.backend.manage_requests import EvalRequest
|
10 |
+
from src.leaderboard.read_evals import EvalResult
|
11 |
+
|
12 |
+
from src.envs import QUEUE_REPO, RESULTS_REPO, API
|
13 |
+
|
14 |
+
import logging
|
15 |
+
import pprint
|
16 |
+
|
17 |
+
logging.getLogger("openai").setLevel(logging.WARNING)
|
18 |
+
|
19 |
+
logging.basicConfig(level=logging.ERROR)
|
20 |
+
pp = pprint.PrettyPrinter(width=80)
|
21 |
+
|
22 |
+
PENDING_STATUS = "PENDING"
|
23 |
+
RUNNING_STATUS = "RUNNING"
|
24 |
+
FINISHED_STATUS = "FINISHED"
|
25 |
+
FAILED_STATUS = "FAILED"
|
26 |
+
|
27 |
+
TASKS_HARNESS = [task.value for task in Tasks]
|
28 |
+
|
29 |
+
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
30 |
+
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
31 |
+
|
32 |
+
|
33 |
+
def request_to_result_name(request: EvalRequest) -> str:
|
34 |
+
org_and_model = request.model.split("/", 1)
|
35 |
+
if len(org_and_model) == 1:
|
36 |
+
model = org_and_model[0]
|
37 |
+
res = f"{model}_{request.precision}"
|
38 |
+
else:
|
39 |
+
org = org_and_model[0]
|
40 |
+
model = org_and_model[1]
|
41 |
+
res = f"{org}_{model}_{request.precision}"
|
42 |
+
return res
|
43 |
+
|
44 |
+
|
45 |
+
def process_finished_requests() -> bool:
|
46 |
+
current_finished_status = [FINISHED_STATUS]
|
47 |
+
|
48 |
+
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
|
49 |
+
eval_requests: list[EvalRequest] = get_eval_requests(job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
50 |
+
# Sort the evals by priority (first submitted first run)
|
51 |
+
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests)
|
52 |
+
|
53 |
+
import random
|
54 |
+
random.shuffle(eval_requests)
|
55 |
+
|
56 |
+
from src.leaderboard.read_evals import get_raw_eval_results
|
57 |
+
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND)
|
58 |
+
|
59 |
+
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
|
60 |
+
result_name_to_result = {r.eval_name: r for r in eval_results}
|
61 |
+
|
62 |
+
for eval_request in eval_requests:
|
63 |
+
result_name: str = request_to_result_name(eval_request)
|
64 |
+
|
65 |
+
# Check the corresponding result
|
66 |
+
from typing import Optional
|
67 |
+
eval_result: Optional[EvalResult] = result_name_to_result[result_name] if result_name in result_name_to_result else None
|
68 |
+
|
69 |
+
# Iterate over tasks and, if we do not have results for a task, run the relevant evaluations
|
70 |
+
for task in TASKS_HARNESS:
|
71 |
+
task_name = task.benchmark
|
72 |
+
|
73 |
+
if eval_result is None or task_name not in eval_result.results:
|
74 |
+
eval_request: EvalRequest = result_name_to_request[result_name]
|
75 |
+
|
76 |
+
print(result_name, 'is incomplete -- missing task:', task_name)
|
77 |
+
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
res = process_finished_requests()
|
src/backend/envs.py
CHANGED
@@ -22,8 +22,8 @@ class Tasks(Enum):
|
|
22 |
# task1 = Task("logiqa", "acc_norm", "LogiQA")
|
23 |
task0 = Task("nq_open", "em", "NQ Open", 64) # 64, as in the ATLAS paper
|
24 |
task1 = Task("triviaqa", "em", "TriviaQA", 64) # 64, as in the ATLAS paper
|
25 |
-
task2 = Task("truthfulqa_mc1", "
|
26 |
-
task3 = Task("truthfulqa_mc2", "
|
27 |
|
28 |
# NUM_FEWSHOT = 64 # Change with your few shot
|
29 |
|
|
|
22 |
# task1 = Task("logiqa", "acc_norm", "LogiQA")
|
23 |
task0 = Task("nq_open", "em", "NQ Open", 64) # 64, as in the ATLAS paper
|
24 |
task1 = Task("triviaqa", "em", "TriviaQA", 64) # 64, as in the ATLAS paper
|
25 |
+
task2 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1", 0)
|
26 |
+
task3 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2", 0) # TruthfulQA is intended as a zero-shot benchmark [5, 47]. https://owainevans.github.io/pdfs/truthfulQA_lin_evans.pdf
|
27 |
|
28 |
# NUM_FEWSHOT = 64 # Change with your few shot
|
29 |
|