Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
pminervini
commited on
Commit
·
ca9ece0
1
Parent(s):
a88d51c
update
Browse files- backend-cli.py +1 -1
- completed-cli.py +45 -1
- src/display/utils.py +2 -0
- src/leaderboard/read_evals.py +74 -18
backend-cli.py
CHANGED
@@ -103,7 +103,7 @@ def process_finished_requests() -> bool:
|
|
103 |
random.shuffle(eval_requests)
|
104 |
|
105 |
from src.leaderboard.read_evals import get_raw_eval_results
|
106 |
-
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND)
|
107 |
|
108 |
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
|
109 |
result_name_to_result = {r.eval_name: r for r in eval_results}
|
|
|
103 |
random.shuffle(eval_requests)
|
104 |
|
105 |
from src.leaderboard.read_evals import get_raw_eval_results
|
106 |
+
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND, True)
|
107 |
|
108 |
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
|
109 |
result_name_to_result = {r.eval_name: r for r in eval_results}
|
completed-cli.py
CHANGED
@@ -45,16 +45,59 @@ def request_to_result_name(request: EvalRequest) -> str:
|
|
45 |
def process_finished_requests() -> bool:
|
46 |
current_finished_status = [FINISHED_STATUS]
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
|
49 |
eval_requests: list[EvalRequest] = get_eval_requests(job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
50 |
# Sort the evals by priority (first submitted first run)
|
51 |
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests)
|
52 |
|
|
|
|
|
|
|
53 |
import random
|
54 |
random.shuffle(eval_requests)
|
55 |
|
56 |
from src.leaderboard.read_evals import get_raw_eval_results
|
57 |
-
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND)
|
58 |
|
59 |
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
|
60 |
result_name_to_result = {r.eval_name: r for r in eval_results}
|
@@ -73,6 +116,7 @@ def process_finished_requests() -> bool:
|
|
73 |
if eval_result is None or task_name not in eval_result.results:
|
74 |
eval_request: EvalRequest = result_name_to_request[result_name]
|
75 |
|
|
|
76 |
print(result_name, 'is incomplete -- missing task:', task_name)
|
77 |
|
78 |
|
|
|
45 |
def process_finished_requests() -> bool:
|
46 |
current_finished_status = [FINISHED_STATUS]
|
47 |
|
48 |
+
if False:
|
49 |
+
import os
|
50 |
+
import dateutil
|
51 |
+
model_result_filepaths = []
|
52 |
+
results_path = f'{EVAL_RESULTS_PATH_BACKEND}/EleutherAI/gpt-neo-1.3B'
|
53 |
+
requests_path = f'{EVAL_REQUESTS_PATH_BACKEND}/EleutherAI/gpt-neo-1.3B_eval_request_False_False_False.json'
|
54 |
+
|
55 |
+
for root, _, files in os.walk(results_path):
|
56 |
+
# We should only have json files in model results
|
57 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
58 |
+
continue
|
59 |
+
|
60 |
+
# Sort the files by date
|
61 |
+
try:
|
62 |
+
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
63 |
+
except dateutil.parser._parser.ParserError:
|
64 |
+
files = [files[-1]]
|
65 |
+
|
66 |
+
for file in files:
|
67 |
+
model_result_filepaths.append(os.path.join(root, file))
|
68 |
+
|
69 |
+
eval_results = {}
|
70 |
+
for model_result_filepath in model_result_filepaths:
|
71 |
+
# Creation of result
|
72 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
73 |
+
eval_result.update_with_request_file(requests_path)
|
74 |
+
|
75 |
+
print('XXX', eval_result)
|
76 |
+
|
77 |
+
# Store results of same eval together
|
78 |
+
eval_name = eval_result.eval_name
|
79 |
+
if eval_name in eval_results.keys():
|
80 |
+
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
81 |
+
else:
|
82 |
+
eval_results[eval_name] = eval_result
|
83 |
+
|
84 |
+
print(eval_results)
|
85 |
+
|
86 |
+
return True
|
87 |
+
|
88 |
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
|
89 |
eval_requests: list[EvalRequest] = get_eval_requests(job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
90 |
# Sort the evals by priority (first submitted first run)
|
91 |
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests)
|
92 |
|
93 |
+
# XXX
|
94 |
+
# eval_requests = [r for r in eval_requests if 'neo-1.3B' in r.model]
|
95 |
+
|
96 |
import random
|
97 |
random.shuffle(eval_requests)
|
98 |
|
99 |
from src.leaderboard.read_evals import get_raw_eval_results
|
100 |
+
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND, True)
|
101 |
|
102 |
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
|
103 |
result_name_to_result = {r.eval_name: r for r in eval_results}
|
|
|
116 |
if eval_result is None or task_name not in eval_result.results:
|
117 |
eval_request: EvalRequest = result_name_to_request[result_name]
|
118 |
|
119 |
+
# print(eval_result)
|
120 |
print(result_name, 'is incomplete -- missing task:', task_name)
|
121 |
|
122 |
|
src/display/utils.py
CHANGED
@@ -25,6 +25,8 @@ class Tasks(Enum):
|
|
25 |
# drop = Task("drop", "f1", "DROP")
|
26 |
nqopen = Task("nq_open", "em", "NQ Open")
|
27 |
triviaqa = Task("triviaqa", "em", "TriviaQA")
|
|
|
|
|
28 |
|
29 |
# These classes are for user facing column names,
|
30 |
# to avoid having to change them all around the code
|
|
|
25 |
# drop = Task("drop", "f1", "DROP")
|
26 |
nqopen = Task("nq_open", "em", "NQ Open")
|
27 |
triviaqa = Task("triviaqa", "em", "TriviaQA")
|
28 |
+
#truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1")
|
29 |
+
#truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2")
|
30 |
|
31 |
# These classes are for user facing column names,
|
32 |
# to avoid having to change them all around the code
|
src/leaderboard/read_evals.py
CHANGED
@@ -69,23 +69,78 @@ class EvalResult:
|
|
69 |
results = {}
|
70 |
for task in Tasks:
|
71 |
task = task.value
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
continue
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
89 |
|
90 |
def post_process_results(results: dict) -> dict:
|
91 |
# {'nq_open': {'em': 0.018005540166204988, 'em_stderr': 0.0022134216580395583}}
|
@@ -191,7 +246,7 @@ def get_request_file_for_model(requests_path, model_name, precision):
|
|
191 |
return request_file
|
192 |
|
193 |
|
194 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
195 |
"""From the path of the results folder root, extract all needed info for results"""
|
196 |
model_result_filepaths = []
|
197 |
|
@@ -212,7 +267,10 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
212 |
eval_results = {}
|
213 |
for model_result_filepath in model_result_filepaths:
|
214 |
# Creation of result
|
215 |
-
|
|
|
|
|
|
|
216 |
eval_result.update_with_request_file(requests_path)
|
217 |
|
218 |
# Store results of same eval together
|
@@ -222,8 +280,6 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
222 |
else:
|
223 |
eval_results[eval_name] = eval_result
|
224 |
|
225 |
-
# breakpoint()
|
226 |
-
|
227 |
results = []
|
228 |
for v in eval_results.values():
|
229 |
results.append(v)
|
|
|
69 |
results = {}
|
70 |
for task in Tasks:
|
71 |
task = task.value
|
72 |
+
|
73 |
+
def post_process_results(results: dict) -> dict:
|
74 |
+
# {'nq_open': {'em': 0.018005540166204988, 'em_stderr': 0.0022134216580395583}}
|
75 |
+
res_copy = results.copy()
|
76 |
+
|
77 |
+
for task_name in res_copy.keys():
|
78 |
+
entry_copy = results[task_name].copy()
|
79 |
+
|
80 |
+
for k, v in entry_copy.items():
|
81 |
+
if "exact_match" in k:
|
82 |
+
results[task_name][k.replace("exact_match", "em")] = v
|
83 |
+
|
84 |
+
entry_copy = results[task_name].copy()
|
85 |
+
|
86 |
+
for k, v in entry_copy.items():
|
87 |
+
if "," in k:
|
88 |
+
tokens = k.split(",")
|
89 |
+
results[task_name][tokens[0]] = v
|
90 |
+
|
91 |
+
return results
|
92 |
+
|
93 |
+
accs = np.array([v.get(task.metric, None) for k, v in post_process_results(data["results"]).items() if task.benchmark in k])
|
94 |
+
|
95 |
+
if accs.size == 0 or any([acc is None for acc in accs]):
|
96 |
continue
|
97 |
|
98 |
+
mean_acc = np.mean(accs) * 100.0
|
99 |
+
results[task.benchmark] = mean_acc
|
100 |
+
|
101 |
+
return EvalResult(eval_name=result_key, full_model=full_model, org=org, model=model, results=results,
|
102 |
+
precision=precision, revision=config.get("model_sha", ""), still_on_hub=still_on_hub,
|
103 |
+
architecture=architecture)
|
104 |
+
|
105 |
+
@staticmethod
|
106 |
+
def init_from_json_file_backend(json_filepath):
|
107 |
+
"""Inits the result from the specific model result file"""
|
108 |
+
with open(json_filepath) as fp:
|
109 |
+
data = json.load(fp)
|
110 |
+
|
111 |
+
# We manage the legacy config format
|
112 |
+
config = data.get("config", data.get("config_general", None))
|
113 |
+
|
114 |
+
# Precision
|
115 |
+
precision = Precision.from_str(config.get("model_dtype"))
|
116 |
+
|
117 |
+
# Get model and org
|
118 |
+
org_and_model = config.get("model_name", config.get("model_args", None))
|
119 |
+
org_and_model = org_and_model.split("/", 1)
|
120 |
+
|
121 |
+
if len(org_and_model) == 1:
|
122 |
+
org = None
|
123 |
+
model = org_and_model[0]
|
124 |
+
result_key = f"{model}_{precision.value.name}"
|
125 |
+
else:
|
126 |
+
org = org_and_model[0]
|
127 |
+
model = org_and_model[1]
|
128 |
+
result_key = f"{org}_{model}_{precision.value.name}"
|
129 |
+
full_model = "/".join(org_and_model)
|
130 |
+
|
131 |
+
still_on_hub, error, model_config = \
|
132 |
+
is_model_on_hub(full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False)
|
133 |
+
architecture = "?"
|
134 |
+
if model_config is not None:
|
135 |
+
architectures = getattr(model_config, "architectures", None)
|
136 |
+
if architectures:
|
137 |
+
architecture = ";".join(architectures)
|
138 |
|
139 |
+
# Extract results available in this file (some results are split in several files)
|
140 |
+
results = {}
|
141 |
+
from src.backend.envs import Tasks as BackendTasks
|
142 |
+
for task in BackendTasks:
|
143 |
+
task = task.value
|
144 |
|
145 |
def post_process_results(results: dict) -> dict:
|
146 |
# {'nq_open': {'em': 0.018005540166204988, 'em_stderr': 0.0022134216580395583}}
|
|
|
246 |
return request_file
|
247 |
|
248 |
|
249 |
+
def get_raw_eval_results(results_path: str, requests_path: str, is_backend: bool = False) -> list[EvalResult]:
|
250 |
"""From the path of the results folder root, extract all needed info for results"""
|
251 |
model_result_filepaths = []
|
252 |
|
|
|
267 |
eval_results = {}
|
268 |
for model_result_filepath in model_result_filepaths:
|
269 |
# Creation of result
|
270 |
+
if is_backend:
|
271 |
+
eval_result = EvalResult.init_from_json_file_backend(model_result_filepath)
|
272 |
+
else:
|
273 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
274 |
eval_result.update_with_request_file(requests_path)
|
275 |
|
276 |
# Store results of same eval together
|
|
|
280 |
else:
|
281 |
eval_results[eval_name] = eval_result
|
282 |
|
|
|
|
|
283 |
results = []
|
284 |
for v in eval_results.values():
|
285 |
results.append(v)
|