#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Hamza Farooq """ import spacy from spacy.lang.en.stop_words import STOP_WORDS from string import punctuation from collections import Counter from heapq import nlargest import os nlp = spacy.load("en_core_web_sm") from sentence_transformers import SentenceTransformer, CrossEncoder, util import datetime from spacy import displacy import streamlit as st import matplotlib.pyplot as plt from wordcloud import WordCloud from matplotlib import pyplot as plt import nltk from rank_bm25 import BM25Okapi from sklearn.feature_extraction import _stop_words import string from tqdm.autonotebook import tqdm import numpy as np import pandas as pd from sentence_transformers import SentenceTransformer import scipy.spatial import pickle from sentence_transformers import SentenceTransformer, util import torch # import utils as utl import time import torch import transformers from transformers import BartTokenizer, BartForConditionalGeneration from string import punctuation # tr = BartTokenizer.from_pretrained('facebook/bart-large-cnn') import numpy as np import pandas as pd from sentence_transformers import SentenceTransformer import scipy.spatial from sentence_transformers import SentenceTransformer, util import torch def main(): # Settings st.set_page_config(layout="wide", page_title='Paris Hotel Finder', page_icon="đ" ) from string import punctuation punctuation=punctuation+ '\n' from sentence_transformers import SentenceTransformer, util import torch import numpy as np import pandas as pd from sentence_transformers import SentenceTransformer import scipy.spatial from sentence_transformers import SentenceTransformer, util import torch #import os @st.cache(allow_output_mutation=True) def load_model(): return SentenceTransformer('all-MiniLM-L6-v2'),SentenceTransformer('multi-qa-MiniLM-L6-cos-v1'),CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') embedder,bi_encoder,cross_encoder = load_model() #original_title = '
Original image
' st.title("Parisian Hotel Finder") with st.expander("âšī¸ - About this app", expanded=True): st.write( """ - This app allows you to search for hotels based on what you're looking for, rather than just cities - it helps with reducing time to go through exhaustive reviews for each hotel! - It uses an innovative semantic search approach that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) đ¤. """ ) punctuation=punctuation+ '\n' #import os # embedder = SentenceTransformer('all-MiniLM-L6-v2') def lower_case(input_str): input_str = input_str.lower() return input_str df_all = pd.read_csv('paris_clean_newer.csv') df_combined = df_all.sort_values(['Hotel']).groupby('Hotel', sort=False).text.apply(''.join).reset_index(name='all_review') df_combined_paris_summary = pd.read_csv('df_combined_paris.csv') df_combined_paris_summary = df_combined_paris_summary[['Hotel','summary']] import re # df_combined = pd.read_csv('df_combined.csv') df_combined['all_review'] = df_combined['all_review'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','',x)) df_combined['all_review']= df_combined['all_review'].apply(lambda x: lower_case(x)) df_basic = df_all[['Hotel','description','price_per_night']].drop_duplicates() df_basic = df_basic.merge(df_combined_paris_summary,how='left') df_combined_e = df_combined.merge(df_basic) df_combined_e['all_review'] =df_combined_e['description']+ df_combined_e['all_review'] + df_combined_e['price_per_night'] df = df_combined_e.copy() df_sentences = df_combined_e.set_index("all_review") df_sentences = df_sentences["Hotel"].to_dict() df_sentences_list = list(df_sentences.keys()) import pandas as pd from tqdm import tqdm from sentence_transformers import SentenceTransformer, util df_sentences_list = [str(d) for d in tqdm(df_sentences_list)] # corpus = df_sentences_list # corpus_embeddings = embedder.encode(corpus,show_progress_bar=True) corpus_embeddings = np.load('embeddings.npy') bi_encoder.max_seq_length = 512 #Truncate long passages to 256 tokens top_k = 32 #Number of passages we want to retrieve with the bi-encoder #The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality # corpus_embeddings_h = np.load('embeddings_h_r.npy') with open('corpus_embeddings_bi_encoder.pickle', 'rb') as pkl: doc_embedding = pickle.load(pkl) with open('tokenized_corpus.pickle', 'rb') as pkl: tokenized_corpus = pickle.load(pkl) bm25 = BM25Okapi(tokenized_corpus) passages = corpus # We lower case our text and remove stop-words from indexing def bm25_tokenizer(text): tokenized_doc = [] for token in text.lower().split(): token = token.strip(string.punctuation) if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS: tokenized_doc.append(token) return tokenized_doc def search(query): # q = [str(userinput)] doc = nlp(str(userinput)) ent_html = displacy.render(doc, style="ent", jupyter=False) # Display the entity visualization in the browser: st.markdown(ent_html, unsafe_allow_html=True) ##### BM25 search (lexical search) ##### bm25_scores = bm25.get_scores(bm25_tokenizer(query)) top_n = np.argpartition(bm25_scores, -5)[-5:] bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n] bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True) bm25list = {} st.title("Top-5 lexical search (BM25) hits") for hit in bm25_hits[0:5]: row_dict = df.loc[df['all_review']== corpus[hit['corpus_id']]] st.subheader(row_dict['Hotel'].values[0]) de = df_basic.loc[df_basic.Hotel == row_dict['Hotel'].values[0]] st.write(f'\tPrice Per night: {de.price_per_night.values[0]}') st.write('Description:') st.expander(de.description.values[0],expanded=False) # try: # st.write('Summary') # st.expander(de.summary.values[0],expanded=False) # except: # None # doc = corpus[hit['corpus_id']] # kp.get_key_phrases(doc) bm25list[row_dict['Hotel'].values[0]] = de.description.values[0][0:200] #### Sematic Search ##### # Encode the query using the bi-encoder and find potentially relevant passages question_embedding = bi_encoder.encode(query, convert_to_tensor=True) # question_embedding = question_embedding.cuda() hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query ##### Re-Ranking ##### # Now, score all retrieved passages with the cross_encoder cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp) # Sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] # Output of top-5 hits from bi-encoder st.write("\n-------------------------\n") st.title("Top-5 Bi-Encoder Retrieval hits") hits = sorted(hits, key=lambda x: x['score'], reverse=True) for hit in hits[0:5]: # st.write("\t{:.3f}\t{}".format(hit['score'], passages[hit['corpus_id']].replace("\n", " "))) row_dict = df.loc[df['all_review']== corpus[hit['corpus_id']]] st.subheader(row_dict['Hotel'].values[0]) de = df_basic.loc[df_basic.Hotel == row_dict['Hotel'].values[0]] st.write(f'\tPrice Per night: {de.price_per_night.values[0]}') st.write('Description:') st.expander(de.description.values[0]) # try: # st.write('Summary') # st.expander(de.summary.values[0],expanded=False) # except: # None # Output of top-5 hits from re-ranker st.write("\n-------------------------\n") st.title("Top-5 Cross-Encoder Re-ranker hits") hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) for hit in hits[0:5]: # st.write("\t{:.3f}\t{}".format(hit['cross-score'], passages[hit['corpus_id']].replace("\n", " "))) row_dict = df.loc[df['all_review']== corpus[hit['corpus_id']]] st.subheader(row_dict['Hotel'].values[0]) de = df_basic.loc[df_basic.Hotel == row_dict['Hotel'].values[0]] st.write(f'\tPrice Per night: {de.price_per_night.values[0]}') st.write('Description:') st.expander(de.description.values[0]) # try: # st.write('Summary') # st.expander(de.summary.values[0],expanded=False) # except: # None sampletext = 'e.g. Hotel near Eiffel Tower with big rooms' userinput = st.text_input('Tell us what are you looking in your hotel?','e.g. Hotel near Eiffel Tower with big rooms',autocomplete="on") da = st.date_input( "Date Check-in", datetime.date(2022, 10, 5)) dst = st.date_input( "Date Check-out", datetime.date(2022, 10, 8)) if not userinput or userinput == sampletext: st.write("Please enter a query to get results") else: query = [str(userinput)] doc = nlp(str(userinput)) search(str(userinput)) # We use cosine-similarity and torch.topk to find the highest 5 scores if __name__ == '__main__': main()