haodongli commited on
Commit
4b4ece6
·
1 Parent(s): 0bb584a

Update gradio_demo.py

Browse files
Files changed (1) hide show
  1. gradio_demo.py +2 -1
gradio_demo.py CHANGED
@@ -4,6 +4,7 @@ import os
4
 
5
  if os.environ.get('SUBMODULES_INSTALLED') != "True":
6
  os.environ['SUBMODULES_INSTALLED'] = "True"
 
7
  os.environ["TORCH_CUDA_ARCH_LIST"] = "3.5;5.0;6.0;6.1;7.0;7.5;8.0;8.6+PTX"
8
  print('==> TORCH_CUDA_ARCH_LIST =', os.environ.get('TORCH_CUDA_ARCH_LIST'))
9
  os.system("python -m pip install git+https://github.com/YixunLiang/simple-knn.git")
@@ -62,7 +63,7 @@ with gr.Blocks() as demo:
62
  gr.Markdown("# <center>LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching</center>")
63
  gr.Markdown("This live demo allows you to generate high-quality 3D content using text prompts.<br> \
64
  It is based on Stable Diffusion 2.1. Please check out our <strong><a href=https://github.com/EnVision-Research/LucidDreamer>Project Page</a> / <a href=https://arxiv.org/abs/2311.11284>Paper</a> / <a href=https://github.com/EnVision-Research/LucidDreamer>Code</a></strong> if you want to learn more about our method!<br> \
65
- Note that this demo is running on A10G Small, the running time might be longer than the reported 35 minutes on A100.<br> \
66
  &copy; This Gradio space was developed by Haodong LI.")
67
  gr.Interface(fn=main, inputs=[gr.Textbox(lines=2, value="A portrait of IRONMAN, white hair, head, photorealistic, 8K, HDR.", label="Your prompt"),
68
  gr.Textbox(lines=1, value="a man head.", label="Point-E init prompt (optional)"),
 
4
 
5
  if os.environ.get('SUBMODULES_INSTALLED') != "True":
6
  os.environ['SUBMODULES_INSTALLED'] = "True"
7
+ # https://github.com/pytorch/extension-cpp/issues/71
8
  os.environ["TORCH_CUDA_ARCH_LIST"] = "3.5;5.0;6.0;6.1;7.0;7.5;8.0;8.6+PTX"
9
  print('==> TORCH_CUDA_ARCH_LIST =', os.environ.get('TORCH_CUDA_ARCH_LIST'))
10
  os.system("python -m pip install git+https://github.com/YixunLiang/simple-knn.git")
 
63
  gr.Markdown("# <center>LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching</center>")
64
  gr.Markdown("This live demo allows you to generate high-quality 3D content using text prompts.<br> \
65
  It is based on Stable Diffusion 2.1. Please check out our <strong><a href=https://github.com/EnVision-Research/LucidDreamer>Project Page</a> / <a href=https://arxiv.org/abs/2311.11284>Paper</a> / <a href=https://github.com/EnVision-Research/LucidDreamer>Code</a></strong> if you want to learn more about our method!<br> \
66
+ Note that this demo is running on A10G Small, the running time might be longer than the reported 35 minutes (5000 iterations) on A100.<br> \
67
  &copy; This Gradio space was developed by Haodong LI.")
68
  gr.Interface(fn=main, inputs=[gr.Textbox(lines=2, value="A portrait of IRONMAN, white hair, head, photorealistic, 8K, HDR.", label="Your prompt"),
69
  gr.Textbox(lines=1, value="a man head.", label="Point-E init prompt (optional)"),