from tensorflow.keras.datasets import imdb from BackPropogation import BackPropogation from tensorflow.keras.preprocessing.sequence import pad_sequences from sklearn.metrics import accuracy_score import pickle top_words = 5000 (X_train, y_train), (X_test,y_test) = imdb.load_data(num_words=top_words) max_review_length = 500 X_train = pad_sequences(X_train, maxlen=max_review_length) X_test = pad_sequences(X_test, maxlen=max_review_length) backprop = BackPropogation(epochs=100,learning_rate=0.01,activation_function='sigmoid') backprop.fit(X_train, y_train) pred = backprop.predict(X_test) print(f"Accuracy : {accuracy_score(pred, y_test)}") with open(r'C:\Users\Sreya\Desktop\deeplearning\Predictionsdl\Deep-Prediction-Hub\BP.pkl','wb') as file: pickle.dump(backprop, file)