Spaces:
Runtime error
Runtime error
hasibzunair
commited on
Commit
•
3b639bc
1
Parent(s):
548c65d
update app.py
Browse files- README.md +3 -1
- app.py +94 -23
- requirements.txt +2 -1
README.md
CHANGED
@@ -12,4 +12,6 @@ license: afl-3.0
|
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
14 |
|
15 |
-
|
|
|
|
|
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
14 |
|
15 |
+
### References
|
16 |
+
* https://huggingface.co/docs/hub/spaces#manage-app-with-github-actions
|
17 |
+
* https://www.gradio.app/image_classification_in_pytorch/
|
app.py
CHANGED
@@ -1,30 +1,101 @@
|
|
1 |
import torch
|
2 |
-
import
|
|
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
-
from torchvision import transforms
|
6 |
|
7 |
"""
|
8 |
-
Built following
|
|
|
|
|
9 |
"""
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from PIL import Image
|
3 |
+
from torchvision import transforms
|
4 |
import gradio as gr
|
5 |
+
import os
|
6 |
|
|
|
7 |
|
8 |
"""
|
9 |
+
Built following:
|
10 |
+
https://huggingface.co/spaces/pytorch/ResNet/tree/main
|
11 |
+
https://www.gradio.app/image_classification_in_pytorch/
|
12 |
"""
|
13 |
|
14 |
+
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
|
15 |
+
|
16 |
+
model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
|
17 |
+
model.eval()
|
18 |
+
|
19 |
+
# Download an example image from the pytorch website
|
20 |
+
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
|
21 |
+
|
22 |
+
def inference(input_image):
|
23 |
+
preprocess = transforms.Compose([
|
24 |
+
transforms.Resize(256),
|
25 |
+
transforms.CenterCrop(224),
|
26 |
+
transforms.ToTensor(),
|
27 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
28 |
+
])
|
29 |
+
input_tensor = preprocess(input_image)
|
30 |
+
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
31 |
+
|
32 |
+
# move the input and model to GPU for speed if available
|
33 |
+
if torch.cuda.is_available():
|
34 |
+
input_batch = input_batch.to('cuda')
|
35 |
+
model.to('cuda')
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
output = model(input_batch)
|
39 |
+
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
|
40 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
41 |
+
|
42 |
+
# Read the categories
|
43 |
+
with open("imagenet_classes.txt", "r") as f:
|
44 |
+
categories = [s.strip() for s in f.readlines()]
|
45 |
+
# Show top categories per image
|
46 |
+
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
47 |
+
result = {}
|
48 |
+
for i in range(top5_prob.size(0)):
|
49 |
+
result[categories[top5_catid[i]]] = top5_prob[i].item()
|
50 |
+
return result
|
51 |
+
|
52 |
+
inputs = gr.inputs.Image(type='pil')
|
53 |
+
outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
|
54 |
+
|
55 |
+
title = "An Image Classification Demo with ResNet"
|
56 |
+
description = "Demo of a ResNet image classifier trained on the ImageNet dataset. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
57 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
|
58 |
+
|
59 |
+
gr.Interface(inference,
|
60 |
+
inputs,
|
61 |
+
outputs,
|
62 |
+
examples=["example1.jpg", "example2.jpg"],
|
63 |
+
title=title,
|
64 |
+
description=description,
|
65 |
+
article=article,
|
66 |
+
analytics_enabled=False).launch()
|
67 |
+
|
68 |
+
# import torch
|
69 |
+
# import requests
|
70 |
+
# import gradio as gr
|
71 |
+
|
72 |
+
# from torchvision import transforms
|
73 |
+
|
74 |
+
# """
|
75 |
+
# Built following https://www.gradio.app/image_classification_in_pytorch/.
|
76 |
+
# """
|
77 |
+
|
78 |
+
# # Load model
|
79 |
+
# model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
80 |
+
|
81 |
+
# # Download human-readable labels for ImageNet.
|
82 |
+
# response = requests.get("https://git.io/JJkYN")
|
83 |
+
# labels = response.text.split("\n")
|
84 |
+
|
85 |
+
# def predict(inp):
|
86 |
+
# inp = transforms.ToTensor()(inp).unsqueeze(0)
|
87 |
+
# with torch.no_grad():
|
88 |
+
# prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
89 |
+
# confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
90 |
+
# return confidences
|
91 |
+
|
92 |
+
# title = "Image Classifier"
|
93 |
+
|
94 |
+
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py' target='_blank'>Github Repo</a></p>"
|
95 |
+
|
96 |
+
# gr.Interface(fn=predict,
|
97 |
+
# inputs=gr.inputs.Image(type="pil"),
|
98 |
+
# outputs=gr.outputs.Label(num_top_classes=3),
|
99 |
+
# examples=["example1.jpg", "example2.jpg"],
|
100 |
+
# theme="default",
|
101 |
+
# css=".footer{display:none !important}").launch()
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
torch
|
2 |
-
torchvision
|
|
|
|
1 |
torch
|
2 |
+
torchvision
|
3 |
+
Pillow
|