hb-setosys
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,57 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
import
|
4 |
-
from tensorflow.keras.applications.resnet152 import ResNet152, preprocess_input, decode_predictions
|
5 |
from tensorflow.keras.preprocessing.image import img_to_array
|
6 |
from PIL import Image
|
|
|
7 |
|
8 |
# Load the pre-trained ResNet152 model
|
9 |
-
MODEL_PATH = "resnet152-image-classifier.h5" # Path to
|
10 |
try:
|
11 |
model = tf.keras.models.load_model(MODEL_PATH)
|
12 |
except Exception as e:
|
13 |
print(f"Error loading model: {e}")
|
14 |
exit()
|
15 |
|
16 |
-
def
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
image =
|
21 |
-
image = img_to_array(image) # Convert PIL image to NumPy array
|
22 |
-
image = preprocess_input(image) # Normalize for ResNet152
|
23 |
-
image = np.expand_dims(image, axis=0) # Add batch dimension
|
24 |
return image
|
25 |
-
|
26 |
-
def
|
27 |
"""
|
28 |
-
|
29 |
"""
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
return {"predictions": results}
|
37 |
|
38 |
-
# Create
|
39 |
interface = gr.Interface(
|
40 |
-
fn=
|
41 |
-
inputs=gr.Image(type="pil",
|
42 |
-
outputs=gr.
|
43 |
title="ResNet152 Image Classifier",
|
44 |
description="Upload an image, and the model will predict what's in the image.",
|
45 |
-
examples=[
|
46 |
-
["example_images/example1.jpg"], # Add paths to example images
|
47 |
-
["example_images/example2.jpg"]
|
48 |
-
],
|
49 |
)
|
50 |
|
51 |
-
# Launch the app
|
52 |
if __name__ == "__main__":
|
53 |
-
interface.launch(
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
+
from tensorflow.keras.applications.resnet import ResNet152, preprocess_input, decode_predictions
|
|
|
4 |
from tensorflow.keras.preprocessing.image import img_to_array
|
5 |
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
|
8 |
# Load the pre-trained ResNet152 model
|
9 |
+
MODEL_PATH = "resnet152-image-classifier.h5" # Path to the saved model
|
10 |
try:
|
11 |
model = tf.keras.models.load_model(MODEL_PATH)
|
12 |
except Exception as e:
|
13 |
print(f"Error loading model: {e}")
|
14 |
exit()
|
15 |
|
16 |
+
def decode_image_from_base64(base64_str):
|
17 |
+
# Decode the base64 string to bytes
|
18 |
+
image_data = base64.b64decode(base64_str)
|
19 |
+
# Convert the bytes into a PIL image
|
20 |
+
image = Image.open(BytesIO(image_data))
|
|
|
|
|
|
|
21 |
return image
|
22 |
+
|
23 |
+
def predict_image(image):
|
24 |
"""
|
25 |
+
Process the uploaded image and return the top 3 predictions.
|
26 |
"""
|
27 |
+
try:
|
28 |
+
# Preprocess the image
|
29 |
+
image = image.resize((224, 224)) # ResNet152 expects 224x224 input
|
30 |
+
image_array = img_to_array(image)
|
31 |
+
image_array = preprocess_input(image_array) # Normalize the image
|
32 |
+
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
33 |
+
|
34 |
+
# Get predictions
|
35 |
+
predictions = model.predict(image_array)
|
36 |
+
decoded_predictions = decode_predictions(predictions, top=3)[0]
|
37 |
+
|
38 |
+
# Format predictions as a list of tuples (label, confidence)
|
39 |
+
results = [(label, float(confidence)) for _, label, confidence in decoded_predictions]
|
40 |
+
return dict(results)
|
41 |
|
42 |
+
except Exception as e:
|
43 |
+
return {"Error": str(e)}
|
|
|
44 |
|
45 |
+
# Create the Gradio interface
|
46 |
interface = gr.Interface(
|
47 |
+
fn=predict_image,
|
48 |
+
inputs=gr.Image(type="pil"), # Accepts an image input
|
49 |
+
outputs=gr.Label(num_top_classes=3), # Shows top 3 predictions with confidence
|
50 |
title="ResNet152 Image Classifier",
|
51 |
description="Upload an image, and the model will predict what's in the image.",
|
52 |
+
examples=["dog.jpg", "cat.jpg"], # Example images for users to test
|
|
|
|
|
|
|
53 |
)
|
54 |
|
55 |
+
# Launch the Gradio app
|
56 |
if __name__ == "__main__":
|
57 |
+
interface.launch()
|