hb-setosys
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input
|
5 |
+
from tensorflow.keras.utils import load_img, img_to_array
|
6 |
+
|
7 |
+
# Load your trained model
|
8 |
+
model = tf.keras.models.load_model("denis_mnist_cnn_model_resnet50_v1.h5") # Ensure you upload this file to Hugging Face Spaces
|
9 |
+
|
10 |
+
# Define a function to preprocess the image
|
11 |
+
def preprocess_image(image):
|
12 |
+
"""
|
13 |
+
Preprocesses the uploaded image for prediction.
|
14 |
+
"""
|
15 |
+
image = image.resize((128, 128)) # Resize to match the model input size
|
16 |
+
image = img_to_array(image) # Convert PIL image to NumPy array
|
17 |
+
image = preprocess_input(image) # Normalize for ResNet50
|
18 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
19 |
+
return image
|
20 |
+
|
21 |
+
# Define the prediction function
|
22 |
+
def predict(image):
|
23 |
+
"""
|
24 |
+
Accepts an image, preprocesses it, and returns the predicted label.
|
25 |
+
"""
|
26 |
+
processed_image = preprocess_image(image)
|
27 |
+
predictions = model.predict(processed_image)
|
28 |
+
predicted_class = np.argmax(predictions, axis=1)[0] # Get the class index
|
29 |
+
confidence = np.max(predictions) # Get confidence score
|
30 |
+
return f"Predicted Class: {predicted_class}, Confidence: {confidence:.2f}"
|
31 |
+
|
32 |
+
# Create a Gradio interface
|
33 |
+
interface = gr.Interface(
|
34 |
+
fn=predict, # The prediction function
|
35 |
+
inputs=gr.inputs.Image(type="pil", label="Upload an Image"), # Input: Image
|
36 |
+
outputs="text", # Output: Text
|
37 |
+
title="MNIST ResNet50 Classifier",
|
38 |
+
description="Upload an image to classify it using the trained ResNet50 model.",
|
39 |
+
examples=[
|
40 |
+
["example_images/example1.png"], # Add paths to example images in your Hugging Face repository
|
41 |
+
["example_images/example2.png"]
|
42 |
+
],
|
43 |
+
)
|
44 |
+
|
45 |
+
# Launch the app
|
46 |
+
if __name__ == "__main__":
|
47 |
+
interface.launch()
|