owl-con-demo / app.py
Hritik
edit code for nle inference
3a496ae
raw
history blame
2.29 kB
import os
import csv
import json
import torch
import argparse
import pandas as pd
import torch.nn as nn
from tqdm import tqdm
from collections import defaultdict
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from torch.utils.data import DataLoader
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
from mplug_owl_video.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor
from peft import LoraConfig, get_peft_model
from data_utils.xgpt3_dataset import MultiModalDataset
from utils import batchify
import gradio as gr
from entailment_inference import get_scores
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4
tokenizer = LlamaTokenizer.from_pretrained(pretrained_ckpt)
image_processor = MplugOwlImageProcessor.from_pretrained(pretrained_ckpt)
processor = MplugOwlProcessor(image_processor, tokenizer)
# Instantiate model
model = MplugOwlForConditionalGeneration.from_pretrained(
pretrained_ckpt,
torch_dtype=torch.bfloat16,
device_map={'':0}
)
for name, param in model.named_parameters():
param.requires_grad = False
peft_config = LoraConfig(
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj|gate_proj|down_proj|up_proj)',
inference_mode=True,
r=32,
lora_alpha=16,
lora_dropout=0.05
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
with open(trained_ckpt, 'rb') as f:
ckpt = torch.load(f, map_location = torch.device(f"cuda:0"))
model.load_state_dict(ckpt)
model = model.to(torch.bfloat16)
print('Model Loaded')
PROMPT = """The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: <|video|>
Human: Does this video entail the description: ""A basketball team walking off the field while the audience claps.""?
AI: """
valid_data = MultiModalDataset("examples/y5xuvHpDPZQ_000005_000015.mp4", PROMPT, tokenizer, processor, max_length = 256, loss_objective = 'sequential')
dataloader = DataLoader(valid_data, pin_memory=True, collate_fn=batchify)
score = get_scores(model, tokenizer, dataloader)
print(score)