picklebot_demo / app.py
hbfreed's picture
Upload app.py
93d1391 verified
raw
history blame
6.32 kB
import gradio as gr
import pandas as pd
import random
import os
import torch
import torch.nn.functional as F
from mobilenet import MobileNetLarge3D, MobileNetSmall3D
from torchvision.io import read_video
import time
def classify_pitch(confidence_scores):
if torch.argmax(confidence_scores) == 0:
call = 'Ball'
elif torch.argmax(confidence_scores) == 1:
call = 'Strike'
else:
print("that's odd, something is wrong")
pass
return call
def get_demo_call(video_name):
video_name = os.path.basename(video_name).lower()
if video_name.startswith("strike"):
ump_out = "Strike"
elif video_name.startswith("ball"):
ump_out = "Ball"
else:
ump_out = None
return ump_out
def call_pitch(pitch):
start = time.time()
std = (0.2104, 0.1986, 0.1829)
mean = (0.3939, 0.3817, 0.3314)
# Convert the mean and std to tensors
mean = torch.tensor(mean).view(1, 3, 1, 1, 1)
std = torch.tensor(std).view(1, 3, 1, 1, 1)
ump_out = get_demo_call(pitch)
pitch_tensor = (read_video(pitch,pts_unit='sec')[0].permute(-1,0,1,2)).unsqueeze(0)/255
pitch_tensor = (pitch_tensor-mean)/std #normalize the pitch tensor
video_length = pitch_tensor.shape[2] #get video length to wait for the video to finish
model = MobileNetSmall3D()
model.load_state_dict(torch.load('weights/MobileNetSmall.pth',map_location=torch.device('cpu')))
model.eval()
#run the model
with torch.no_grad():
output = model(pitch_tensor)
output = F.softmax(output,dim=1)
final_call = classify_pitch(output)
# time.sleep(video_length-1.5) #wait until the video is done to return the call
while time.time() - start < (video_length-5)/15: #wait until the video is done to return the call and go 2 frames early to seem speedy
time.sleep(0.1)
if ump_out is not None:
return final_call,ump_out
else:
return final_call
def generate_random_pitch():
random_number = random.randint(1,2645342) #random number in our range to select a random pitch
df = pd.read_csv('picklebot_2m.csv',skiprows=random_number,nrows=1,header=None) #just load one row
video_link = df.values[0][0]
label = df.values[0][1]
if label == 0:
ump_out = "Ball"
elif label == 1:
ump_out = "Strike"
else:
#error if it's not a 0 or 1
ump_out = "Error"
random_pitch = download_pitch(video_link,ump_out)
return random_pitch
def download_pitch(video_link,ump_out=None):
#download and process the video link using yt-dlp and ffmpeg
if ump_out is not None:
video_out = f"demo_files/downloaded_videos/{ump_out}_demo_video.mp4"
os.system(f"yt-dlp -q --no-warnings --force-overwrites -f mp4 {video_link} -o '{video_out}'")
os.system(f'ffmpeg -y -nostats -loglevel 0 -i {video_out} -vf "crop=700:700:in_w/2-350:in_h/2-350,scale=224:224" -r 15 -c:v libx264 -crf 23 -c:a aac -an -strict experimental {video_out}_cropped_video.mp4')
else:
video_out = f"demo_files/downloaded_videos/own_demo_video.mp4"
os.system(f"yt-dlp -q --no-warnings --force-overwrites -f mp4 {video_link} -o '{video_out}'")
os.system(f'ffmpeg -y -nostats -loglevel 0 -i {video_out} -vf "crop=700:700:in_w/2-350:in_h/2-350,scale=224:224" -r 15 -c:v libx264 -crf 23 -c:a aac -strict experimental {video_out}_cropped_video.mp4')
return f"{video_out}_cropped_video.mp4"
demo_files = os.listdir("demo_files/")
demo_files = [os.path.join("demo_files/", file) for file in demo_files if file.endswith(".mp4")]
with gr.Blocks(title="Picklebot") as demo:
with gr.Tab("Picklebot"):
with gr.Row():
with gr.Column(scale=3):
inp = gr.Video(interactive=False, label="Pitch Video")
with gr.Column(scale=2):
ump_out = gr.Label(label="Umpire's Original Call")
pb_out = gr.Label(label="Picklebot's Call")
random_button = gr.Button("🔀 Load a Random Pitch")
random_button.click(fn=generate_random_pitch,outputs=[inp])
inp.play(fn=call_pitch,inputs=inp,outputs=[pb_out,ump_out])
gr.ClearButton([inp,pb_out,ump_out])
gr.Examples(demo_files,inputs=inp,outputs=[inp])
with gr.Tab("Use Your Own Video!"):
with gr.Row():
gr.Markdown(value=
"""
# Here\'s how to use your own video:
1. Navigate to [Baseball Savant's statcast search](https://baseballsavant.mlb.com/statcast_search)
2. Choose the situation and pitch you want (just keep in mind that the network was only trained on called balls and called strikes)
3. Click on the pitcher or batter's name to get to list of pitches
4. Right click on the camera icon to the right, and copy the link
5. Paste the video url in below, and press go to download the pitch
6. Watch the video and see what Picklebot thinks!
""")
with gr.Row():
with gr.Column(scale=3):
vid_inp = gr.Video(interactive=False, label="Pitch Video")
with gr.Column(scale=2):
#make a textbox to take in the user's video link
input_txt = gr.Textbox(placeholder="Paste your video link here",label="Video Link")
input_txt.submit(fn=download_pitch,inputs=input_txt,outputs=vid_inp)
submit_button = gr.Button("Go!")
submit_button.click(fn=download_pitch,inputs=input_txt,outputs=vid_inp)
pb_out = gr.Label(label="Picklebot's Call")
vid_inp.play(fn=call_pitch,inputs=vid_inp,outputs=pb_out)
gr.ClearButton([vid_inp,pb_out,input_txt])
with gr.Tab("About"):
gr.Markdown(value=
"""Picklebot is a 3D Convolutional Neural Network that classifies baseball pitches as balls or strikes.
It was trained on the [Picklebot-50K Dataset](https://huggingface.co/datasets/hbfreed/Picklebot-50K),
comprised of over fifty thousand pitches to achieve ~80% accuracy.""")
if __name__ == "__main__":
demo.launch()