Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,787 Bytes
e9b69d2 76f722d e9b69d2 7c600ad 8ab445f e9b69d2 d989475 c8ab947 d989475 c8ab947 d989475 c8ab947 d989475 c8ab947 e9b69d2 61044da 22f4889 dd3c146 61044da 24f33ad dd3c146 f3d4c6b 61044da dd3c146 f3d4c6b 61044da dd3c146 5895ac2 dd3c146 5895ac2 8c17d76 61044da e9b69d2 9e3a2ff a7e7cf3 7c600ad dd3c146 40576c0 61044da 0662719 343970c 7c600ad e9b69d2 7c600ad e9b69d2 7c600ad e9b69d2 7c600ad e9b69d2 24f33ad dd3b355 f3d4c6b 343970c 85cde2d dd3b355 e9b69d2 7c600ad d989475 e9b69d2 7c600ad 8fdc8fc e9b69d2 480e1dc 2c56265 8fdc8fc 2c56265 8fdc8fc 2c56265 8fdc8fc 2c56265 8fdc8fc 2c56265 e9b69d2 d989475 e9b69d2 d989475 e9b69d2 d989475 e9b69d2 d989475 e9b69d2 7c600ad e9b69d2 7c600ad d989475 7c600ad d989475 6766b80 123602a bbacd9b 123602a bbacd9b 64fb7dd 480b27e 6766b80 7c600ad 6766b80 7c600ad 7b74eba d989475 7b74eba 7c600ad bbacd9b e9b69d2 9b9ab2a 0b561c5 7b74eba 7c600ad e9b69d2 7b74eba 8fdc8fc 7b74eba e9b69d2 7c600ad e9b69d2 7c600ad e9b69d2 9b9ab2a bbacd9b 7c600ad bbacd9b e9b69d2 7c600ad d989475 7c600ad 9b9ab2a 7c600ad d989475 7c600ad d989475 7c600ad d989475 7c600ad d989475 7c600ad bbacd9b 7c600ad bbacd9b d959cb1 7c600ad d989475 7c600ad 76f722d 7c600ad bbacd9b d959cb1 7c600ad 76f722d 7c600ad 76f722d 7b74eba 76f722d 7b74eba 8fdc8fc 7b74eba a385437 7b74eba 7c600ad d989475 7c600ad bbacd9b 7c600ad bbacd9b 7c600ad 8fe5320 a385437 8fe5320 7b74eba 8fdc8fc 7b74eba 61044da 8fe5320 c8be4ae 8fe5320 7b74eba 4b9083a 0b561c5 4b9083a 0b561c5 4b9083a 0b561c5 4b9083a 480b27e 4b9083a 0b561c5 4b9083a 343970c 4b9083a 0b561c5 4b9083a 7b74eba 9b9ab2a 7b74eba 9b9ab2a 7c600ad 7b74eba 7c600ad e9b69d2 1a61201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
from huggingface_hub import snapshot_download
from katsu import Katsu
from models import build_model
import gradio as gr
import numpy as np
import os
import phonemizer
import pypdf
import random
import re
import spaces
import torch
import yaml
CUDA_AVAILABLE = torch.cuda.is_available()
snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN'])
config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml')))
models = {device: build_model(config['model_params'], device) for device in ['cpu'] + (['cuda'] if CUDA_AVAILABLE else [])}
for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items():
for device in models:
assert key in models[device], key
try:
models[device][key].load_state_dict(state_dict)
except:
state_dict = {k[7:]: v for k, v in state_dict.items()}
models[device][key].load_state_dict(state_dict, strict=False)
PARAM_COUNT = sum(p.numel() for value in models['cpu'].values() for p in value.parameters())
assert PARAM_COUNT < 82_000_000, PARAM_COUNT
random_texts = {}
for lang in ['en', 'ja']:
with open(f'{lang}.txt', 'r') as r:
random_texts[lang] = [line.strip() for line in r]
def get_random_text(voice):
if voice[0] == 'j':
lang = 'ja'
else:
lang = 'en'
return random.choice(random_texts[lang])
def parens_to_angles(s):
return s.replace('(', '«').replace(')', '»')
def split_num(num):
num = num.group()
if '.' in num:
# Decimal
a, b = num.split('.')
return ' point '.join([a, ' '.join(b)])
elif ':' in num:
# Time
h, m = [int(n) for n in num.split(':')]
if m == 0:
return f"{h} o'clock"
elif m < 10:
return f'{h} oh {m}'
return f'{h} {m}'
# Year
year = int(num[:4])
if year < 1100 or year % 1000 < 10:
return num
left, right = num[:2], int(num[2:4])
s = 's' if num.endswith('s') else ''
if 100 <= year % 1000 <= 999:
if right == 0:
return f'{left} hundred{s}'
elif right < 10:
return f'{left} oh {right}{s}'
return f'{left} {right}{s}'
def normalize(text):
# TODO: Custom text normalization rules?
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
text = re.sub(r'\b([Yy])eah\b', r"\1e'a", text)
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
text = re.sub(r'[^\S \n]', ' ', text)
text = re.sub(r' +', ' ', text)
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
text = re.sub(r'(?<=\d),(?=\d)', '', text)
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text) # TODO: could be minus
text = re.sub(r'(?<=\d)S', ' S', text)
text = re.sub(r"(?<=[A-Z])'?s", lambda m: m.group().upper(), text)
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
return parens_to_angles(text).strip()
phonemizers = dict(
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
j=Katsu(),
)
def phonemize(text, voice, norm=True):
lang = voice[0]
if norm:
text = normalize(text)
ps = phonemizers[lang].phonemize([text])
ps = ps[0] if ps else ''
# TODO: Custom phonemization rules?
ps = parens_to_angles(ps)
# https://en.wiktionary.org/wiki/kokoro#English
if lang in 'ab':
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
if lang == 'a':
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
ps = ''.join(filter(lambda p: p in VOCAB, ps))
if lang == 'j' and any(p in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' for p in ps):
gr.Warning('Japanese tokenizer does not handle English letters')
return ps.strip()
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def get_vocab():
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
return dicts
VOCAB = get_vocab()
def tokenize(ps):
return [i for i in map(VOCAB.get, ps) if i is not None]
# Starred voices are more stable
CHOICES = {
'🇺🇸 🚺 American Female ⭐': 'af',
'🇺🇸 🚺 AF1 ⭐': 'af_1',
'🇺🇸 🚺 Alloy': 'af_alloy',
'🇺🇸 🚺 Bella ⭐': 'af_bella',
'🇺🇸 🚺 Jessica': 'af_jessica',
'🇺🇸 🚺 Nicole ⭐': 'af_nicole',
'🇺🇸 🚺 Nova': 'af_nova',
'🇺🇸 🚺 River': 'af_river',
'🇺🇸 🚺 Sarah ⭐': 'af_sarah',
'🇺🇸 🚺 Sky ⭐': 'af_sky',
'🇺🇸 🚹 Adam': 'am_adam',
'🇺🇸 🚹 Echo': 'am_echo',
'🇺🇸 🚹 Eric': 'am_eric',
'🇺🇸 🚹 Liam': 'am_liam',
'🇺🇸 🚹 Michael ⭐': 'am_michael',
'🇺🇸 🚹 Onyx': 'am_onyx',
'🇬🇧 🚺 British Female 0': 'bf_0',
'🇬🇧 🚺 British Female 1': 'bf_1',
'🇬🇧 🚺 British Female 2': 'bf_2',
'🇬🇧 🚺 British Female 3': 'bf_3',
'🇬🇧 🚺 Alice': 'bf_alice',
'🇬🇧 🚺 Lily': 'bf_lily',
'🇬🇧 🚹 British Male 0': 'bm_0',
'🇬🇧 🚹 British Male 1': 'bm_1',
'🇬🇧 🚹 Daniel': 'bm_daniel',
'🇬🇧 🚹 Fable': 'bm_fable',
'🇬🇧 🚹 George': 'bm_george',
'🇬🇧 🚹 Lewis': 'bm_lewis',
'🇯🇵 🚺 Japanese Female 0 ⭐': 'jf_0',
'🇯🇵 🚺 Japanese Female 1': 'jf_1',
'🇯🇵 🚺 Japanese Female 2': 'jf_2',
'🇯🇵 🚺 Japanese Female 3': 'jf_3',
}
VOICES = {device: {k: torch.load(os.path.join(snapshot, 'voicepacks', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()} for device in models}
SAMPLE_RATE = 24000
@torch.no_grad()
def forward(tokens, voice, speed, device='cpu'):
ref_s = VOICES[device][voice][len(tokens)]
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
bert_dur = models[device].bert(tokens, attention_mask=(~text_mask).int())
d_en = models[device].bert_encoder(bert_dur).transpose(-1, -2)
s = ref_s[:, 128:]
d = models[device].predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = models[device].predictor.lstm(d)
duration = models[device].predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration).clamp(min=1).long()
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
c_frame += pred_dur[0,i].item()
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
F0_pred, N_pred = models[device].predictor.F0Ntrain(en, s)
t_en = models[device].text_encoder(tokens, input_lengths, text_mask)
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
return models[device].decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
@spaces.GPU(duration=10)
def forward_gpu(tokens, voice, speed):
return forward(tokens, voice, speed, device='cuda')
# Must be backwards compatible with https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena
def generate(text, voice, ps, speed, _reduce_noise, trim, _closing_cut, _ease_in, _ease_out, _pad_before, _pad_after, use_gpu):
return _generate(text, voice, ps, speed, trim, use_gpu)
def _generate(text, voice, ps, speed, trim, use_gpu):
if voice not in VOICES['cpu']:
voice = 'af'
ps = ps or phonemize(text, voice)
tokens = tokenize(ps)
if not tokens:
return (None, '')
elif len(tokens) > 510:
tokens = tokens[:510]
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
try:
if not use_gpu or (use_gpu == 'auto' and len(ps) < 100):
out = forward(tokens, voice, speed)
else:
out = forward_gpu(tokens, voice, speed)
except gr.exceptions.Error as e:
raise gr.Error(e)
return (None, '')
trim = int(trim / speed)
if trim > 0:
if trim * 2 >= len(out):
return (None, '')
out = out[trim:-trim]
return ((SAMPLE_RATE, out), ps)
def toggle_autoplay(autoplay):
return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)
USE_GPU_CHOICES = [('Auto 🔀', 'auto'), ('CPU 💬', False), ('ZeroGPU 📝', True)]
USE_GPU_INFOS = {
'auto': 'Use CPU or GPU, whichever is faster',
False: 'CPU is ~faster <100 tokens',
True: 'ZeroGPU is ~faster >100 tokens',
}
def change_use_gpu(value):
return gr.Dropdown(USE_GPU_CHOICES, value=value, label='Hardware', info=USE_GPU_INFOS[value], interactive=CUDA_AVAILABLE)
with gr.Blocks() as basic_tts:
with gr.Row():
with gr.Column():
text = gr.Textbox(label='Input Text', info='Generate speech for one segment of text using Kokoro, a TTS model with 80 million parameters')
with gr.Row():
voice = gr.Dropdown(list(CHOICES.items()), value='af', label='Voice', info='Starred voices are more stable')
use_gpu = gr.Dropdown(
USE_GPU_CHOICES,
value='auto' if CUDA_AVAILABLE else False,
label='Hardware',
info=USE_GPU_INFOS['auto' if CUDA_AVAILABLE else False],
interactive=CUDA_AVAILABLE
)
use_gpu.change(fn=change_use_gpu, inputs=[use_gpu], outputs=[use_gpu])
with gr.Row():
random_btn = gr.Button('Random Text', variant='secondary')
generate_btn = gr.Button('Generate', variant='primary')
random_btn.click(get_random_text, inputs=[voice], outputs=[text])
with gr.Accordion('Input Tokens', open=False):
in_ps = gr.Textbox(show_label=False, info='Override the input text with custom phonemes. Leave this blank to automatically tokenize the input text instead.')
with gr.Row():
clear_btn = gr.ClearButton(in_ps)
phonemize_btn = gr.Button('Tokenize Input Text', variant='primary')
phonemize_btn.click(phonemize, inputs=[text, voice], outputs=[in_ps])
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
with gr.Accordion('Audio Settings', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='⚡️ Speed', info='Adjust the speaking speed')
trim = gr.Slider(minimum=0, maximum=24000, value=4000, step=1000, label='✂️ Trim', info='Cut from both ends')
with gr.Accordion('Output Tokens', open=True):
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 allowed. Same as input tokens if supplied, excluding unknowns.')
text.submit(_generate, inputs=[text, voice, in_ps, speed, trim, use_gpu], outputs=[audio, out_ps])
generate_btn.click(_generate, inputs=[text, voice, in_ps, speed, trim, use_gpu], outputs=[audio, out_ps])
@torch.no_grad()
def lf_forward(token_lists, voice, speed, device='cpu'):
voicepack = VOICES[device][voice]
outs = []
for tokens in token_lists:
ref_s = voicepack[len(tokens)]
s = ref_s[:, 128:]
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
bert_dur = models[device].bert(tokens, attention_mask=(~text_mask).int())
d_en = models[device].bert_encoder(bert_dur).transpose(-1, -2)
d = models[device].predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = models[device].predictor.lstm(d)
duration = models[device].predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration).clamp(min=1).long()
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
c_frame += pred_dur[0,i].item()
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
F0_pred, N_pred = models[device].predictor.F0Ntrain(en, s)
t_en = models[device].text_encoder(tokens, input_lengths, text_mask)
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
outs.append(models[device].decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy())
return outs
@spaces.GPU
def lf_forward_gpu(token_lists, voice, speed):
return lf_forward(token_lists, voice, speed, device='cuda')
def resplit_strings(arr):
# Handle edge cases
if not arr:
return '', ''
if len(arr) == 1:
return arr[0], ''
# Try each possible split point
min_diff = float('inf')
best_split = 0
# Calculate lengths when joined with spaces
lengths = [len(s) for s in arr]
spaces = len(arr) - 1 # Total spaces needed
# Try each split point
left_len = 0
right_len = sum(lengths) + spaces
for i in range(1, len(arr)):
# Add current word and space to left side
left_len += lengths[i-1] + (1 if i > 1 else 0)
# Remove current word and space from right side
right_len -= lengths[i-1] + 1
diff = abs(left_len - right_len)
if diff < min_diff:
min_diff = diff
best_split = i
# Join the strings with the best split point
return ' '.join(arr[:best_split]), ' '.join(arr[best_split:])
def recursive_split(text, voice):
if not text:
return []
tokens = phonemize(text, voice, norm=False)
if len(tokens) < 511:
return [(text, tokens, len(tokens))] if tokens else []
if ' ' not in text:
return []
for punctuation in ['!.?…', ':;', ',—']:
splits = re.split(f'(?:(?<=[{punctuation}])|(?<=[{punctuation}]["\'»])|(?<=[{punctuation}]["\'»]["\'»])) ', text)
if len(splits) > 1:
break
else:
splits = None
splits = splits or text.split(' ')
a, b = resplit_strings(splits)
return recursive_split(a, voice) + recursive_split(b, voice)
def segment_and_tokenize(text, voice, skip_square_brackets=True, newline_split=2):
if skip_square_brackets:
text = re.sub(r'\[.*?\]', '', text)
texts = [t.strip() for t in re.split('\n{'+str(newline_split)+',}', normalize(text))] if newline_split > 0 else [normalize(text)]
segments = [row for t in texts for row in recursive_split(t, voice)]
return [(i, *row) for i, row in enumerate(segments)]
def lf_generate(segments, voice, speed, trim, pad_between, use_gpu):
token_lists = list(map(tokenize, segments['Tokens']))
wavs = []
trim = int(trim / speed)
pad_between = int(pad_between / speed)
batch_size = 100
for i in range(0, len(token_lists), batch_size):
try:
if use_gpu:
outs = lf_forward_gpu(token_lists[i:i+batch_size], voice, speed)
else:
outs = lf_forward(token_lists[i:i+batch_size], voice, speed)
except gr.exceptions.Error as e:
if wavs:
gr.Warning(str(e))
else:
raise gr.Error(e)
break
for out in outs:
if trim > 0:
if trim * 2 >= len(out):
continue
out = out[trim:-trim]
if wavs and pad_between > 0:
wavs.append(np.zeros(pad_between))
wavs.append(out)
return (SAMPLE_RATE, np.concatenate(wavs)) if wavs else None
def did_change_segments(segments):
x = len(segments) if segments['Length'].any() else 0
return [
gr.Button('Tokenize', variant='secondary' if x else 'primary'),
gr.Button(f'Generate x{x}', variant='primary' if x else 'secondary', interactive=x > 0),
]
def extract_text(file):
if file.endswith('.pdf'):
with open(file, 'rb') as rb:
pdf_reader = pypdf.PdfReader(rb)
return '\n'.join([page.extract_text() for page in pdf_reader.pages])
elif file.endswith('.txt'):
with open(file, 'r') as r:
return '\n'.join([line for line in r])
return None
with gr.Blocks() as lf_tts:
with gr.Row():
with gr.Column():
file_input = gr.File(file_types=['.pdf', '.txt'], label='Input File: pdf or txt')
text = gr.Textbox(label='Input Text', info='Generate speech in batches of 100 text segments and automatically join them together')
file_input.upload(fn=extract_text, inputs=[file_input], outputs=[text])
with gr.Row():
voice = gr.Dropdown(list(CHOICES.items()), value='af', label='Voice', info='Starred voices are more stable')
use_gpu = gr.Dropdown(
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
value=CUDA_AVAILABLE,
label='Hardware',
info='GPU is >10x faster but has a usage quota',
interactive=CUDA_AVAILABLE
)
with gr.Accordion('Text Settings', open=False):
skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations')
newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0)
with gr.Row():
segment_btn = gr.Button('Tokenize', variant='primary')
generate_btn = gr.Button('Generate x0', variant='secondary', interactive=False)
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio')
with gr.Accordion('Audio Settings', open=True):
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='⚡️ Speed', info='Adjust the speaking speed')
trim = gr.Slider(minimum=0, maximum=24000, value=0, step=1000, label='✂️ Trim', info='Cut from both ends')
pad_between = gr.Slider(minimum=0, maximum=24000, value=0, step=1000, label='🔇 Pad Between', info='How much silence to insert between segments')
with gr.Row():
segments = gr.Dataframe(headers=['#', 'Text', 'Tokens', 'Length'], row_count=(1, 'dynamic'), col_count=(4, 'fixed'), label='Segments', interactive=False, wrap=True)
segments.change(fn=did_change_segments, inputs=[segments], outputs=[segment_btn, generate_btn])
segment_btn.click(segment_and_tokenize, inputs=[text, voice, skip_square_brackets, newline_split], outputs=[segments])
generate_btn.click(lf_generate, inputs=[segments, voice, speed, trim, pad_between, use_gpu], outputs=[audio])
with gr.Blocks() as about:
gr.Markdown("""
Kokoro is a frontier TTS model for its size. It has 80 million parameters,<sup>[1]</sup> uses a lean StyleTTS 2 architecture,<sup>[2]</sup> and was trained on high-quality data. The weights are currently private, but a free public demo is hosted here, at `https://hf.co/spaces/hexgrad/Kokoro-TTS`. The Community tab is open for feature requests, bug reports, etc. For other inquiries, contact `@rzvzn` on Discord.
### FAQ
#### Will this be open sourced?
There currently isn't a release date scheduled for the weights. The inference code in this space is MIT licensed. The architecture was already published by Li et al, with MIT licensed code and pretrained weights.<sup>[2]</sup>
#### What is the difference between stable and unstable voices?
An unstable voice is more likely to stumble or produce unnatural artifacts, especially on short or strange texts.
#### How can CPU be faster than ZeroGPU?
The CPU is a dedicated resource for this Space, while the ZeroGPU pool is shared and dynamically allocated across all of HF. The ZeroGPU queue/allocator system inevitably adds latency to each request.<br/>
For Basic TTS under ~100 tokens or characters, only a few seconds of audio need to be generated, so the actual compute is not that heavy. In these short bursts, the dedicated CPU can often compute the result faster than the total time it takes to: enter the ZeroGPU queue, wait to get allocated, and have a GPU compute and deliver the result.<br/>
ZeroGPU catches up beyond 100 tokens and especially closer to the ~500 token context window. Long-Form mode processes batches of 100 segments at a time, so the GPU should outspeed the CPU by 1-2 orders of magnitude.
### Compute
The model was trained on 1x A100-class 80GB instances rented from [Vast.ai](https://cloud.vast.ai/?ref_id=79907).<sup>[3]</sup><br/>
Vast was chosen over other compute providers due to its competitive on-demand hourly rates.<br/>
The average hourly cost for the 1x A100-class 80GB VRAM instances used for training was below $1/hr — around half the quoted rates from other providers.
### Gradio API
This Space can be used via API. The following code block can be copied and run in one Google Colab cell.
```
# 1️⃣ Install the Gradio Python client
!pip install -q gradio_client
# 2️⃣ Initialize the client
from gradio_client import Client
client = Client('hexgrad/Kokoro-TTS')
# 3️⃣ Call the generate endpoint, which returns a pair: an audio path and a string of output phonemes
audio_path, out_ps = client.predict(
text="How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born.",
voice='af',
api_name='/generate'
)
# 4️⃣ Display the audio and print the output phonemes
from IPython.display import display, Audio
display(Audio(audio_path, autoplay=True))
print(out_ps)
```
This Space and the underlying Kokoro model are both under development and subject to change. Reliability is not guaranteed. Hugging Face and Gradio might enforce their own rate limits.
### Model Version History
| Version | Date | Val mel / dur / f0 Losses |
| ------- | ---- | ------------------------- |
| v0.19 | 2024 Nov 22 | 0.261 / 0.627 / 1.897 |
| v0.16 | 2024 Nov 15 | 0.263 / 0.646 / 1.934 |
| v0.14 | 2024 Nov 12 | 0.262 / 0.642 / 1.889 |
### Licenses
Inference code: MIT<br/>
espeak-ng dependency: GPL-3.0<sup>[4]</sup><br/>
Random English texts: Unknown<sup>[5]</sup><br/>
Random Japanese texts: CC0 public domain<sup>[6]</sup>
### References
1. Kokoro parameter count | https://hf.co/spaces/hexgrad/Kokoro-TTS/blob/main/app.py#L31
2. StyleTTS 2 | https://github.com/yl4579/StyleTTS2
3. Vast.ai referral link | https://cloud.vast.ai/?ref_id=79907
4. eSpeak NG | https://github.com/espeak-ng/espeak-ng
5. Quotable Data | https://github.com/quotable-io/data/blob/master/data/quotes.json
6. Common Voice Japanese sentences | https://github.com/common-voice/common-voice/tree/main/server/data/ja
""")
with gr.Blocks() as app:
gr.TabbedInterface(
[basic_tts, lf_tts, about],
['🔥 Basic TTS', '📖 Long-Form', 'ℹ️ About'],
)
if __name__ == '__main__':
app.queue(api_open=True).launch()
|