File size: 20,908 Bytes
e9b69d2
 
 
 
 
 
 
 
76f722d
e9b69d2
7c600ad
8ab445f
e9b69d2
 
 
c8ab947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b69d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e3a2ff
 
 
 
 
a7e7cf3
7c600ad
 
 
 
 
40576c0
7c600ad
e9b69d2
 
 
 
7c600ad
e9b69d2
 
7c600ad
e9b69d2
7c600ad
 
e9b69d2
 
 
 
 
 
 
7c600ad
 
e9b69d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c600ad
 
 
 
e9b69d2
42f9149
3f2318e
 
 
 
 
 
 
 
 
 
 
 
e9b69d2
 
42f9149
 
 
 
e9b69d2
 
 
 
 
 
 
 
 
 
 
 
 
7c18c8b
e9b69d2
e5a80f9
7c600ad
e9b69d2
 
 
 
 
 
 
 
 
 
7c600ad
 
e9b69d2
 
7c600ad
 
 
e9b69d2
 
7c600ad
 
6766b80
42f9149
33faceb
42f9149
6766b80
7c600ad
6766b80
 
 
 
 
7c600ad
 
 
 
 
e9b69d2
 
2acb6ca
e9b69d2
2acb6ca
 
e9b69d2
2acb6ca
 
e9b69d2
2acb6ca
 
e9b69d2
2acb6ca
d959cb1
2acb6ca
 
d959cb1
2acb6ca
 
e9b69d2
 
7c600ad
e9b69d2
 
 
 
 
 
 
 
7c600ad
 
e9b69d2
 
7c600ad
e9b69d2
 
 
7c600ad
 
 
e9b69d2
 
 
7c600ad
e9b69d2
 
2acb6ca
e9b69d2
2acb6ca
e9b69d2
 
 
 
7c600ad
2acb6ca
 
 
 
 
 
e9b69d2
7c600ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d959cb1
7c600ad
 
d959cb1
 
 
7c600ad
 
 
 
 
 
76f722d
7c600ad
 
 
 
 
 
 
2acb6ca
7c600ad
2acb6ca
 
7c600ad
2acb6ca
 
7c600ad
2acb6ca
d959cb1
 
7c600ad
d959cb1
 
 
 
 
 
7c600ad
 
 
 
 
 
 
 
 
76f722d
 
 
 
 
 
 
 
 
 
7c600ad
 
 
76f722d
7c600ad
76f722d
7c600ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2acb6ca
7c600ad
2acb6ca
7c600ad
 
 
 
 
 
2acb6ca
d959cb1
2acb6ca
d959cb1
 
 
7c600ad
 
 
 
d959cb1
7c600ad
 
 
 
 
 
 
e9b69d2
1a61201
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from huggingface_hub import snapshot_download
from katsu import Katsu
from models import build_model
import gradio as gr
import noisereduce as nr
import numpy as np
import os
import phonemizer
import pypdf
import random
import re
import spaces
import torch
import yaml

device = 'cuda' if torch.cuda.is_available() else 'cpu'

snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN'])
config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml')))
model = build_model(config['model_params'])
for key, value in model.items():
    for module in value.children():
        if isinstance(module, torch.nn.RNNBase):
            module.flatten_parameters()

_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items():
    assert key in model, key
    try:
        model[key].load_state_dict(state_dict)
    except:
        state_dict = {k[7:]: v for k, v in state_dict.items()}
        model[key].load_state_dict(state_dict, strict=False)

PARAM_COUNT = sum(p.numel() for value in model.values() for p in value.parameters())
print('PARAM_COUNT', PARAM_COUNT)
assert PARAM_COUNT < 82_000_000, PARAM_COUNT

random_texts = {}
for lang in ['en', 'ja']:
    with open(f'{lang}.txt', 'r') as r:
        random_texts[lang] = [line.strip() for line in r]

def get_random_text(voice):
    if voice[0] == 'j':
        lang = 'ja'
    else:
        lang = 'en'
    return random.choice(random_texts[lang])

def parens_to_angles(s):
    return s.replace('(', '«').replace(')', '»')

def normalize(text):
    # TODO: Custom text normalization rules?
    text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
    text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
    text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
    text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
    text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
    text = re.sub(r'\b([Yy])eah\b', r"\1e'a", text)
    text = text.replace(chr(8216), "'").replace(chr(8217), "'")
    text = text.replace(chr(8220), '"').replace(chr(8221), '"')
    text = re.sub(r'[^\S \n]', ' ', text)
    text = re.sub(r'  +', ' ', text)
    text = re.sub(r'(?<=\n) +(?=\n)', '', text)
    text = re.sub(r'(?<=\d),(?=\d)', '', text)
    return parens_to_angles(text).strip()

phonemizers = dict(
    a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
    b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
    j=Katsu(),
)

def phonemize(text, voice, norm=True):
    lang = voice[0]
    if norm:
        text = normalize(text)
    ps = phonemizers[lang].phonemize([text])
    ps = ps[0] if ps else ''
    # TODO: Custom phonemization rules?
    ps = parens_to_angles(ps)
    # https://en.wiktionary.org/wiki/kokoro#English
    ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
    ps = ''.join(filter(lambda p: p in VOCAB, ps))
    if lang == 'j' and any(p in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' for p in ps):
        gr.Warning('Japanese tokenizer does not handle English letters.')
    return ps.strip()

def length_to_mask(lengths):
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask+1, lengths.unsqueeze(1))
    return mask

def get_vocab():
    _pad = "$"
    _punctuation = ';:,.!?¡¿—…"«»“” '
    _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
    _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
    symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
    dicts = {}
    for i in range(len((symbols))):
        dicts[symbols[i]] = i
    return dicts

VOCAB = get_vocab()

def tokenize(ps):
    return [i for i in map(VOCAB.get, ps) if i is not None]

CHOICES = {
    '🇺🇸 🚺 American Female 0': 'af_zero',
    '🇺🇸 🚺 Bella': 'af_bella',
    '🇺🇸 🚺 Nicole': 'af_nicole',
    '🇺🇸 🚹 Michael': 'am_michael',
    '🇺🇸 🚹 Adam': 'am_adam',
    '🇬🇧 🚺 British Female 0': 'bf_0',
    '🇬🇧 🚺 British Female 1': 'bf_1',
    '🇬🇧 🚺 British Female 2': 'bf_2',
    '🇬🇧 🚺 British Female 3': 'bf_3',
    '🇬🇧 🚹 British Male 0': 'bm_0',
    '🇬🇧 🚹 British Male 1': 'bm_1',
    '🇬🇧 🚹 British Male 2': 'bm_2',
    '🇯🇵 🚺 Japanese Female 0': 'jf_0',
}
VOICES = {k: torch.load(os.path.join(snapshot, 'voices', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()}
def get_random_af_voice():
    # Must be an American female voice to maintain compatability with
    # https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena
    return random.choice(['af_zero', 'af_bella'])

np_log_99 = np.log(99)
def s_curve(p):
    if p <= 0:
        return 0
    elif p >= 1:
        return 1
    s = 1 / (1 + np.exp((1-p*2)*np_log_99))
    s = (s-0.01) * 50/49
    return s

SAMPLE_RATE = 24000

@spaces.GPU(duration=5)
@torch.no_grad()
def forward(tokens, voice, speed):
    ref_s = VOICES[voice]
    tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
    input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
    text_mask = length_to_mask(input_lengths).to(device)
    bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
    d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
    s = ref_s[:, 128:]
    d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
    x, _ = model.predictor.lstm(d)
    duration = model.predictor.duration_proj(x)
    duration = torch.sigmoid(duration).sum(axis=-1) / speed
    pred_dur = torch.round(duration).clamp(min=1).long()
    pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
    c_frame = 0
    for i in range(pred_aln_trg.size(0)):
        pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
        c_frame += pred_dur[0,i].item()
    en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
    F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
    t_en = model.text_encoder(tokens, input_lengths, text_mask)
    asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
    return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()

def generate(text, voice, ps=None, speed=1.0, reduce_noise=0.5, opening_cut=4000, closing_cut=2000, ease_in=3000, ease_out=1000, pad_before=5000, pad_after=5000):
    if voice not in VOICES:
        voice = get_random_af_voice()
    ps = ps or phonemize(text, voice)
    tokens = tokenize(ps)
    if not tokens:
        return (None, '')
    elif len(tokens) > 510:
        tokens = tokens[:510]
    ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
    try:
        out = forward(tokens, voice, speed)
    except gr.exceptions.Error as e:
        raise gr.Error(e)
        return (None, '')
    if reduce_noise > 0:
        out = nr.reduce_noise(y=out, sr=SAMPLE_RATE, prop_decrease=reduce_noise, n_fft=512)
    opening_cut = int(opening_cut / speed)
    if opening_cut > 0:
        out = out[opening_cut:]
    closing_cut = int(closing_cut / speed)
    if closing_cut > 0:
        out = out[:-closing_cut]
    ease_in = min(int(ease_in / speed), len(out)//2)
    for i in range(ease_in):
        out[i] *= s_curve(i / ease_in)
    ease_out = min(int(ease_out / speed), len(out)//2)
    for i in range(ease_out):
        out[-i-1] *= s_curve(i / ease_out)
    pad_before = int(pad_before / speed)
    if pad_before > 0:
        out = np.concatenate([np.zeros(pad_before), out])
    pad_after = int(pad_after / speed)
    if pad_after > 0:
        out = np.concatenate([out, np.zeros(pad_after)])
    return ((SAMPLE_RATE, out), ps)

with gr.Blocks() as basic_tts:
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(label='Input Text')
            voice = gr.Dropdown(list(CHOICES.items()), label='Voice')
            with gr.Row():
                random_btn = gr.Button('Random Text', variant='secondary')
                generate_btn = gr.Button('Generate', variant='primary')
            random_btn.click(get_random_text, inputs=[voice], outputs=[text])
            with gr.Accordion('Input Tokens', open=False):
                in_ps = gr.Textbox(show_label=False, info='Override the input text with custom phonemes. Leave this blank to automatically tokenize the input text instead.')
                with gr.Row():
                    clear_btn = gr.ClearButton(in_ps)
                    phonemize_btn = gr.Button('Tokenize Input Text', variant='primary')
            phonemize_btn.click(phonemize, inputs=[text, voice], outputs=[in_ps])
        with gr.Column():
            audio = gr.Audio(interactive=False, label='Output Audio')
            with gr.Accordion('Output Tokens', open=True):
                out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 allowed. Same as input tokens if supplied, excluding unknowns.')
    with gr.Accordion('Audio Settings', open=False):
        with gr.Row():
            reduce_noise = gr.Slider(minimum=0, maximum=1, value=0.5, label='Reduce Noise', info='👻 Fix it in post: non-stationary noise reduction via spectral gating.')
        with gr.Row():
            speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label='Speed', info='⚡️ Adjust the speed of the audio. The settings below are auto-scaled by speed.')
        with gr.Row():
            with gr.Column():
                opening_cut = gr.Slider(minimum=0, maximum=24000, value=4000, step=1000, label='Opening Cut', info='✂️ Cut this many samples from the start.')
            with gr.Column():
                closing_cut = gr.Slider(minimum=0, maximum=24000, value=2000, step=1000, label='Closing Cut', info='✂️ Cut this many samples from the end.')
        with gr.Row():
            with gr.Column():
                ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='Ease In', info='🚀 Ease in for this many samples, after opening cut.')
            with gr.Column():
                ease_out = gr.Slider(minimum=0, maximum=24000, value=1000, step=1000, label='Ease Out', info='📐 Ease out for this many samples, before closing cut.')
        with gr.Row():
            with gr.Column():
                pad_before = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Pad Before', info='🔇 How many samples of silence to insert before the start.')
            with gr.Column():
                pad_after = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Pad After', info='🔇 How many samples of silence to append after the end.')
    generate_btn.click(generate, inputs=[text, voice, in_ps, speed, reduce_noise, opening_cut, closing_cut, ease_in, ease_out, pad_before, pad_after], outputs=[audio, out_ps])

@spaces.GPU
@torch.no_grad()
def lf_forward(token_lists, voice, speed):
    ref_s = VOICES[voice]
    s = ref_s[:, 128:]
    outs = []
    for tokens in token_lists:
        tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
        text_mask = length_to_mask(input_lengths).to(device)
        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
        d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
        x, _ = model.predictor.lstm(d)
        duration = model.predictor.duration_proj(x)
        duration = torch.sigmoid(duration).sum(axis=-1) / speed
        pred_dur = torch.round(duration).clamp(min=1).long()
        pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
            c_frame += pred_dur[0,i].item()
        en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
        t_en = model.text_encoder(tokens, input_lengths, text_mask)
        asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
        outs.append(model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy())
    return outs

def resplit_strings(arr):
    # Handle edge cases
    if not arr:
        return '', ''
    if len(arr) == 1:
        return arr[0], ''
    # Try each possible split point
    min_diff = float('inf')
    best_split = 0
    # Calculate lengths when joined with spaces
    lengths = [len(s) for s in arr]
    spaces = len(arr) - 1  # Total spaces needed
    # Try each split point
    left_len = 0
    right_len = sum(lengths) + spaces
    for i in range(1, len(arr)):
        # Add current word and space to left side
        left_len += lengths[i-1] + (1 if i > 1 else 0)
        # Remove current word and space from right side
        right_len -= lengths[i-1] + 1
        diff = abs(left_len - right_len)
        if diff < min_diff:
            min_diff = diff
            best_split = i
    # Join the strings with the best split point
    return ' '.join(arr[:best_split]), ' '.join(arr[best_split:])

def recursive_split(text, voice):
    if not text:
        return []
    tokens = phonemize(text, voice, norm=False)
    if len(tokens) < 511:
        return [(text, tokens, len(tokens))] if tokens else []
    if ' ' not in text:
        return []
    for punctuation in ['!.?…', ':;', ',—']:
        splits = re.split(f'(?:(?<=[{punctuation}])|(?<=[{punctuation}]["\'»])|(?<=[{punctuation}]["\'»]["\'»])) ', text)
        if len(splits) > 1:
            break
        else:
            splits = None
    splits = splits or text.split(' ')
    a, b = resplit_strings(splits)
    return recursive_split(a, voice) + recursive_split(b, voice)

def segment_and_tokenize(text, voice, skip_square_brackets=True, newline_split=2):
    if skip_square_brackets:
        text = re.sub(r'\[.*?\]', '', text)
    texts = [t.strip() for t in re.split('\n{'+str(newline_split)+',}', normalize(text))] if newline_split > 0 else [normalize(text)]
    segments = [row for t in texts for row in recursive_split(t, voice)]
    return [(i, *row) for i, row in enumerate(segments)]

def lf_generate(segments, voice, speed=1.0, reduce_noise=0.5, opening_cut=4000, closing_cut=2000, ease_in=3000, ease_out=1000, pad_before=5000, pad_after=5000, pad_between=10000):
    token_lists = list(map(tokenize, segments['Tokens']))
    wavs = []
    opening_cut = int(opening_cut / speed)
    closing_cut = int(closing_cut / speed)
    pad_between = int(pad_between / speed)
    batch_size = 100
    for i in range(0, len(token_lists), batch_size):
        try:
            outs = lf_forward(token_lists[i:i+batch_size], voice, speed)
        except gr.exceptions.Error as e:
            if wavs:
                gr.Warning(str(e))
            else:
                raise gr.Error(e)
            break
        for out in outs:
            if reduce_noise > 0:
                out = nr.reduce_noise(y=out, sr=SAMPLE_RATE, prop_decrease=reduce_noise, n_fft=512)
            if opening_cut > 0:
                out = out[opening_cut:]
            if closing_cut > 0:
                out = out[:-closing_cut]
            ease_in = min(int(ease_in / speed), len(out)//2)
            for i in range(ease_in):
                out[i] *= s_curve(i / ease_in)
            ease_out = min(int(ease_out / speed), len(out)//2)
            for i in range(ease_out):
                out[-i-1] *= s_curve(i / ease_out)
            if wavs and pad_between > 0:
                wavs.append(np.zeros(pad_between))
            wavs.append(out)
    pad_before = int(pad_before / speed)
    if pad_before > 0:
        wavs.insert(0, np.zeros(pad_before))
    pad_after = int(pad_after / speed)
    if pad_after > 0:
        wavs.append(np.zeros(pad_after))
    return (SAMPLE_RATE, np.concatenate(wavs)) if wavs else None

def did_change_segments(segments):
    x = len(segments) if segments['Length'].any() else 0
    return [
        gr.Button('Tokenize', variant='secondary' if x else 'primary'),
        gr.Button(f'Generate x{x}', variant='primary' if x else 'secondary', interactive=x > 0),
    ]

def extract_text(file):
    if file.endswith('.pdf'):
        with open(file, 'rb') as rb:
            pdf_reader = pypdf.PdfReader(rb)
            return '\n'.join([page.extract_text() for page in pdf_reader.pages])
    elif file.endswith('.txt'):
        with open(file, 'r') as r:
            return '\n'.join([line for line in r])
    return None

with gr.Blocks() as lf_tts:
    with gr.Row():
        with gr.Column():
            file_input = gr.File(file_types=['.pdf', '.txt'], label='Input File: pdf or txt')
            text = gr.Textbox(label='Input Text')
            file_input.upload(fn=extract_text, inputs=[file_input], outputs=[text])
            voice = gr.Dropdown(list(CHOICES.items()), label='Voice')
            with gr.Accordion('Text Settings', open=False):
                skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations.')
                newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0)
            with gr.Row():
                segment_btn = gr.Button('Tokenize', variant='primary')
                generate_btn = gr.Button('Generate x0', variant='secondary', interactive=False)
        with gr.Column():
            audio = gr.Audio(interactive=False, label='Output Audio')
            with gr.Accordion('Audio Settings', open=False):
                with gr.Row():
                    reduce_noise = gr.Slider(minimum=0, maximum=1, value=0.5, label='Reduce Noise', info='👻 Fix it in post: non-stationary noise reduction via spectral gating.')
                with gr.Row():
                    speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label='Speed', info='⚡️ Adjust the speed of the audio. The settings below are auto-scaled by speed.')
                with gr.Row():
                    with gr.Column():
                        opening_cut = gr.Slider(minimum=0, maximum=24000, value=4000, step=1000, label='Opening Cut', info='✂️ Cut this many samples from the start.')
                    with gr.Column():
                        closing_cut = gr.Slider(minimum=0, maximum=24000, value=2000, step=1000, label='Closing Cut', info='✂️ Cut this many samples from the end.')
                with gr.Row():
                    with gr.Column():
                        ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='Ease In', info='🚀 Ease in for this many samples, after opening cut.')
                    with gr.Column():
                        ease_out = gr.Slider(minimum=0, maximum=24000, value=1000, step=1000, label='Ease Out', info='📐 Ease out for this many samples, before closing cut.')
                with gr.Row():
                    with gr.Column():
                        pad_before = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Pad Before', info='🔇 How many samples of silence to insert before the start.')
                    with gr.Column():
                        pad_after = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Pad After', info='🔇 How many samples of silence to append after the end.')
                with gr.Row():
                    pad_between = gr.Slider(minimum=0, maximum=24000, value=10000, step=1000, label='Pad Between', info='🔇 How many samples of silence to insert between segments.')
    with gr.Row():
        segments = gr.Dataframe(headers=['#', 'Text', 'Tokens', 'Length'], row_count=(1, 'dynamic'), col_count=(4, 'fixed'), label='Segments', interactive=False, wrap=True)
        segments.change(fn=did_change_segments, inputs=[segments], outputs=[segment_btn, generate_btn])
    segment_btn.click(segment_and_tokenize, inputs=[text, voice, skip_square_brackets, newline_split], outputs=[segments])
    generate_btn.click(lf_generate, inputs=[segments, voice, speed, reduce_noise, opening_cut, closing_cut, ease_in, ease_out, pad_before, pad_after, pad_between], outputs=[audio])

with gr.Blocks() as app:
    gr.TabbedInterface(
        [basic_tts, lf_tts],
        ['Basic TTS', 'Long-Form'],
    )

if __name__ == '__main__':
    app.queue(api_open=True).launch()