Spaces:
Running
on
Zero
Running
on
Zero
from huggingface_hub import snapshot_download | |
from katsu import Katsu | |
from models import build_model | |
import gradio as gr | |
import noisereduce as nr | |
import numpy as np | |
import os | |
import phonemizer | |
import pypdf | |
import random | |
import re | |
import spaces | |
import torch | |
import yaml | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN']) | |
config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml'))) | |
model = build_model(config['model_params']) | |
for key, value in model.items(): | |
for module in value.children(): | |
if isinstance(module, torch.nn.RNNBase): | |
module.flatten_parameters() | |
_ = [model[key].eval() for key in model] | |
_ = [model[key].to(device) for key in model] | |
for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items(): | |
assert key in model, key | |
try: | |
model[key].load_state_dict(state_dict) | |
except: | |
state_dict = {k[7:]: v for k, v in state_dict.items()} | |
model[key].load_state_dict(state_dict, strict=False) | |
PARAM_COUNT = sum(p.numel() for value in model.values() for p in value.parameters()) | |
print('PARAM_COUNT', PARAM_COUNT) | |
assert PARAM_COUNT < 82_000_000, PARAM_COUNT | |
random_texts = {} | |
for lang in ['en', 'ja']: | |
with open(f'{lang}.txt', 'r') as r: | |
random_texts[lang] = [line.strip() for line in r] | |
def get_random_text(voice): | |
if voice[0] == 'j': | |
lang = 'ja' | |
else: | |
lang = 'en' | |
return random.choice(random_texts[lang]) | |
def parens_to_angles(s): | |
return s.replace('(', '«').replace(')', '»') | |
def normalize(text): | |
# TODO: Custom text normalization rules? | |
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text) | |
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text) | |
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text) | |
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text) | |
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text) | |
text = re.sub(r'\b([Yy])eah\b', r"\1e'a", text) | |
text = text.replace(chr(8216), "'").replace(chr(8217), "'") | |
text = text.replace(chr(8220), '"').replace(chr(8221), '"') | |
text = re.sub(r'[^\S \n]', ' ', text) | |
text = re.sub(r' +', ' ', text) | |
text = re.sub(r'(?<=\n) +(?=\n)', '', text) | |
text = re.sub(r'(?<=\d),(?=\d)', '', text) | |
return parens_to_angles(text).strip() | |
phonemizers = dict( | |
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True), | |
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True), | |
j=Katsu(), | |
) | |
def phonemize(text, voice, norm=True): | |
lang = voice[0] | |
if norm: | |
text = normalize(text) | |
ps = phonemizers[lang].phonemize([text]) | |
ps = ps[0] if ps else '' | |
# TODO: Custom phonemization rules? | |
ps = parens_to_angles(ps) | |
# https://en.wiktionary.org/wiki/kokoro#English | |
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ') | |
ps = ''.join(filter(lambda p: p in VOCAB, ps)) | |
if lang == 'j' and any(p in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' for p in ps): | |
gr.Warning('Japanese tokenizer does not handle English letters.') | |
return ps.strip() | |
def length_to_mask(lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def get_vocab(): | |
_pad = "$" | |
_punctuation = ';:,.!?¡¿—…"«»“” ' | |
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' | |
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" | |
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) | |
dicts = {} | |
for i in range(len((symbols))): | |
dicts[symbols[i]] = i | |
return dicts | |
VOCAB = get_vocab() | |
def tokenize(ps): | |
return [i for i in map(VOCAB.get, ps) if i is not None] | |
# 🧪 indicates that voices are experimental | |
CHOICES = { | |
'🇺🇸 🚺 American Female 0': 'af_0', | |
'🇺🇸 🚺 Alloy 🧪': 'af_alloy', | |
'🇺🇸 🚺 Ava 🧪': 'af_ava', | |
'🇺🇸 🚺 Bella': 'af_bella', | |
'🇺🇸 🚺 Jessica 🧪': 'af_jessica', | |
'🇺🇸 🚺 Nicole': 'af_nicole', | |
'🇺🇸 🚺 Nova 🧪': 'af_nova', | |
'🇺🇸 🚺 River 🧪': 'af_river', | |
'🇺🇸 🚺 Sarah': 'af_sarah', | |
'🇺🇸 🚺 Sky 🧪': 'af_sky', | |
'🇺🇸 🚹 Adam': 'am_adam', | |
'🇺🇸 🚹 Echo 🧪': 'am_echo', | |
'🇺🇸 🚹 Eric 🧪': 'am_eric', | |
'🇺🇸 🚹 Liam 🧪': 'am_liam', | |
'🇺🇸 🚹 Michael': 'am_michael', | |
'🇺🇸 🚹 Onyx 🧪': 'am_onyx', | |
'🇬🇧 🚺 British Female 0': 'bf_0', | |
'🇬🇧 🚺 Alice 🧪': 'bf_alice', | |
'🇬🇧 🚺 Lily 🧪': 'bf_lily', | |
'🇬🇧 🚹 British Male 0': 'bm_0', | |
'🇬🇧 🚹 British Male 1': 'bm_1', | |
'🇬🇧 🚹 British Male 2': 'bm_2', | |
'🇬🇧 🚹 Daniel 🧪': 'bm_daniel', | |
'🇬🇧 🚹 Fable 🧪': 'bm_fable', | |
'🇬🇧 🚹 George 🧪': 'bm_george', | |
'🇯🇵 🚺 Japanese Female 0': 'jf_0', | |
} | |
VOICES = {k: torch.load(os.path.join(snapshot, 'voices', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()} | |
np_log_99 = np.log(99) | |
def s_curve(p): | |
if p <= 0: | |
return 0 | |
elif p >= 1: | |
return 1 | |
s = 1 / (1 + np.exp((1-p*2)*np_log_99)) | |
s = (s-0.01) * 50/49 | |
return s | |
SAMPLE_RATE = 24000 | |
def forward(tokens, voice, speed): | |
ref_s = VOICES[voice] | |
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device) | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
text_mask = length_to_mask(input_lengths).to(device) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
s = ref_s[:, 128:] | |
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) / speed | |
pred_dur = torch.round(duration).clamp(min=1).long() | |
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item()) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1 | |
c_frame += pred_dur[0,i].item() | |
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device) | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device) | |
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy() | |
def generate(text, voice, ps=None, speed=1.0, reduce_noise=0.5, opening_cut=4000, closing_cut=2000, ease_in=3000, ease_out=1000, pad_before=5000, pad_after=5000): | |
if voice not in VOICES: | |
# Ensure stability for https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena | |
voice = 'af_0' | |
ps = ps or phonemize(text, voice) | |
tokens = tokenize(ps) | |
if not tokens: | |
return (None, '') | |
elif len(tokens) > 510: | |
tokens = tokens[:510] | |
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens) | |
try: | |
out = forward(tokens, voice, speed) | |
except gr.exceptions.Error as e: | |
raise gr.Error(e) | |
return (None, '') | |
if reduce_noise > 0: | |
out = nr.reduce_noise(y=out, sr=SAMPLE_RATE, prop_decrease=reduce_noise, n_fft=512) | |
opening_cut = int(opening_cut / speed) | |
if opening_cut > 0: | |
out = out[opening_cut:] | |
closing_cut = int(closing_cut / speed) | |
if closing_cut > 0: | |
out = out[:-closing_cut] | |
ease_in = min(int(ease_in / speed), len(out)//2) | |
for i in range(ease_in): | |
out[i] *= s_curve(i / ease_in) | |
ease_out = min(int(ease_out / speed), len(out)//2) | |
for i in range(ease_out): | |
out[-i-1] *= s_curve(i / ease_out) | |
pad_before = int(pad_before / speed) | |
if pad_before > 0: | |
out = np.concatenate([np.zeros(pad_before), out]) | |
pad_after = int(pad_after / speed) | |
if pad_after > 0: | |
out = np.concatenate([out, np.zeros(pad_after)]) | |
return ((SAMPLE_RATE, out), ps) | |
with gr.Blocks() as basic_tts: | |
with gr.Row(): | |
with gr.Column(): | |
text = gr.Textbox(label='Input Text') | |
voice = gr.Dropdown(list(CHOICES.items()), label='Voice', info='🧪 Experimental voices may be unstable.') | |
with gr.Row(): | |
random_btn = gr.Button('Random Text', variant='secondary') | |
generate_btn = gr.Button('Generate', variant='primary') | |
random_btn.click(get_random_text, inputs=[voice], outputs=[text]) | |
with gr.Accordion('Input Tokens', open=False): | |
in_ps = gr.Textbox(show_label=False, info='Override the input text with custom phonemes. Leave this blank to automatically tokenize the input text instead.') | |
with gr.Row(): | |
clear_btn = gr.ClearButton(in_ps) | |
phonemize_btn = gr.Button('Tokenize Input Text', variant='primary') | |
phonemize_btn.click(phonemize, inputs=[text, voice], outputs=[in_ps]) | |
with gr.Column(): | |
audio = gr.Audio(interactive=False, label='Output Audio') | |
with gr.Accordion('Output Tokens', open=True): | |
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 allowed. Same as input tokens if supplied, excluding unknowns.') | |
with gr.Accordion('Audio Settings', open=False): | |
with gr.Row(): | |
reduce_noise = gr.Slider(minimum=0, maximum=1, value=0.5, label='Reduce Noise', info='👻 Fix it in post: non-stationary noise reduction via spectral gating.') | |
with gr.Row(): | |
speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label='Speed', info='⚡️ Adjust the speed of the audio. The settings below are auto-scaled by speed.') | |
with gr.Row(): | |
with gr.Column(): | |
opening_cut = gr.Slider(minimum=0, maximum=24000, value=4000, step=1000, label='Opening Cut', info='✂️ Cut this many samples from the start.') | |
with gr.Column(): | |
closing_cut = gr.Slider(minimum=0, maximum=24000, value=2000, step=1000, label='Closing Cut', info='✂️ Cut this many samples from the end.') | |
with gr.Row(): | |
with gr.Column(): | |
ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='Ease In', info='🚀 Ease in for this many samples, after opening cut.') | |
with gr.Column(): | |
ease_out = gr.Slider(minimum=0, maximum=24000, value=1000, step=1000, label='Ease Out', info='📐 Ease out for this many samples, before closing cut.') | |
with gr.Row(): | |
with gr.Column(): | |
pad_before = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Pad Before', info='🔇 How many samples of silence to insert before the start.') | |
with gr.Column(): | |
pad_after = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Pad After', info='🔇 How many samples of silence to append after the end.') | |
generate_btn.click(generate, inputs=[text, voice, in_ps, speed, reduce_noise, opening_cut, closing_cut, ease_in, ease_out, pad_before, pad_after], outputs=[audio, out_ps]) | |
def lf_forward(token_lists, voice, speed): | |
ref_s = VOICES[voice] | |
s = ref_s[:, 128:] | |
outs = [] | |
for tokens in token_lists: | |
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device) | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
text_mask = length_to_mask(input_lengths).to(device) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) / speed | |
pred_dur = torch.round(duration).clamp(min=1).long() | |
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item()) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1 | |
c_frame += pred_dur[0,i].item() | |
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device) | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device) | |
outs.append(model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()) | |
return outs | |
def resplit_strings(arr): | |
# Handle edge cases | |
if not arr: | |
return '', '' | |
if len(arr) == 1: | |
return arr[0], '' | |
# Try each possible split point | |
min_diff = float('inf') | |
best_split = 0 | |
# Calculate lengths when joined with spaces | |
lengths = [len(s) for s in arr] | |
spaces = len(arr) - 1 # Total spaces needed | |
# Try each split point | |
left_len = 0 | |
right_len = sum(lengths) + spaces | |
for i in range(1, len(arr)): | |
# Add current word and space to left side | |
left_len += lengths[i-1] + (1 if i > 1 else 0) | |
# Remove current word and space from right side | |
right_len -= lengths[i-1] + 1 | |
diff = abs(left_len - right_len) | |
if diff < min_diff: | |
min_diff = diff | |
best_split = i | |
# Join the strings with the best split point | |
return ' '.join(arr[:best_split]), ' '.join(arr[best_split:]) | |
def recursive_split(text, voice): | |
if not text: | |
return [] | |
tokens = phonemize(text, voice, norm=False) | |
if len(tokens) < 511: | |
return [(text, tokens, len(tokens))] if tokens else [] | |
if ' ' not in text: | |
return [] | |
for punctuation in ['!.?…', ':;', ',—']: | |
splits = re.split(f'(?:(?<=[{punctuation}])|(?<=[{punctuation}]["\'»])|(?<=[{punctuation}]["\'»]["\'»])) ', text) | |
if len(splits) > 1: | |
break | |
else: | |
splits = None | |
splits = splits or text.split(' ') | |
a, b = resplit_strings(splits) | |
return recursive_split(a, voice) + recursive_split(b, voice) | |
def segment_and_tokenize(text, voice, skip_square_brackets=True, newline_split=2): | |
if skip_square_brackets: | |
text = re.sub(r'\[.*?\]', '', text) | |
texts = [t.strip() for t in re.split('\n{'+str(newline_split)+',}', normalize(text))] if newline_split > 0 else [normalize(text)] | |
segments = [row for t in texts for row in recursive_split(t, voice)] | |
return [(i, *row) for i, row in enumerate(segments)] | |
def lf_generate(segments, voice, speed=1.0, reduce_noise=0.5, opening_cut=4000, closing_cut=2000, ease_in=3000, ease_out=1000, pad_before=5000, pad_after=5000, pad_between=10000): | |
token_lists = list(map(tokenize, segments['Tokens'])) | |
wavs = [] | |
opening_cut = int(opening_cut / speed) | |
closing_cut = int(closing_cut / speed) | |
pad_between = int(pad_between / speed) | |
batch_size = 100 | |
for i in range(0, len(token_lists), batch_size): | |
try: | |
outs = lf_forward(token_lists[i:i+batch_size], voice, speed) | |
except gr.exceptions.Error as e: | |
if wavs: | |
gr.Warning(str(e)) | |
else: | |
raise gr.Error(e) | |
break | |
for out in outs: | |
if reduce_noise > 0: | |
out = nr.reduce_noise(y=out, sr=SAMPLE_RATE, prop_decrease=reduce_noise, n_fft=512) | |
if opening_cut > 0: | |
out = out[opening_cut:] | |
if closing_cut > 0: | |
out = out[:-closing_cut] | |
ease_in = min(int(ease_in / speed), len(out)//2) | |
for i in range(ease_in): | |
out[i] *= s_curve(i / ease_in) | |
ease_out = min(int(ease_out / speed), len(out)//2) | |
for i in range(ease_out): | |
out[-i-1] *= s_curve(i / ease_out) | |
if wavs and pad_between > 0: | |
wavs.append(np.zeros(pad_between)) | |
wavs.append(out) | |
pad_before = int(pad_before / speed) | |
if pad_before > 0: | |
wavs.insert(0, np.zeros(pad_before)) | |
pad_after = int(pad_after / speed) | |
if pad_after > 0: | |
wavs.append(np.zeros(pad_after)) | |
return (SAMPLE_RATE, np.concatenate(wavs)) if wavs else None | |
def did_change_segments(segments): | |
x = len(segments) if segments['Length'].any() else 0 | |
return [ | |
gr.Button('Tokenize', variant='secondary' if x else 'primary'), | |
gr.Button(f'Generate x{x}', variant='primary' if x else 'secondary', interactive=x > 0), | |
] | |
def extract_text(file): | |
if file.endswith('.pdf'): | |
with open(file, 'rb') as rb: | |
pdf_reader = pypdf.PdfReader(rb) | |
return '\n'.join([page.extract_text() for page in pdf_reader.pages]) | |
elif file.endswith('.txt'): | |
with open(file, 'r') as r: | |
return '\n'.join([line for line in r]) | |
return None | |
with gr.Blocks() as lf_tts: | |
with gr.Row(): | |
with gr.Column(): | |
file_input = gr.File(file_types=['.pdf', '.txt'], label='Input File: pdf or txt') | |
text = gr.Textbox(label='Input Text') | |
file_input.upload(fn=extract_text, inputs=[file_input], outputs=[text]) | |
voice = gr.Dropdown(list(CHOICES.items()), label='Voice', info='🧪 Experimental voices may be unstable.') | |
with gr.Accordion('Text Settings', open=False): | |
skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations.') | |
newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0) | |
with gr.Row(): | |
segment_btn = gr.Button('Tokenize', variant='primary') | |
generate_btn = gr.Button('Generate x0', variant='secondary', interactive=False) | |
with gr.Column(): | |
audio = gr.Audio(interactive=False, label='Output Audio') | |
with gr.Accordion('Audio Settings', open=False): | |
with gr.Row(): | |
reduce_noise = gr.Slider(minimum=0, maximum=1, value=0.5, label='Reduce Noise', info='👻 Fix it in post: non-stationary noise reduction via spectral gating.') | |
with gr.Row(): | |
speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label='Speed', info='⚡️ Adjust the speed of the audio. The settings below are auto-scaled by speed.') | |
with gr.Row(): | |
with gr.Column(): | |
opening_cut = gr.Slider(minimum=0, maximum=24000, value=4000, step=1000, label='Opening Cut', info='✂️ Cut this many samples from the start.') | |
with gr.Column(): | |
closing_cut = gr.Slider(minimum=0, maximum=24000, value=2000, step=1000, label='Closing Cut', info='✂️ Cut this many samples from the end.') | |
with gr.Row(): | |
with gr.Column(): | |
ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='Ease In', info='🚀 Ease in for this many samples, after opening cut.') | |
with gr.Column(): | |
ease_out = gr.Slider(minimum=0, maximum=24000, value=1000, step=1000, label='Ease Out', info='📐 Ease out for this many samples, before closing cut.') | |
with gr.Row(): | |
with gr.Column(): | |
pad_before = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Pad Before', info='🔇 How many samples of silence to insert before the start.') | |
with gr.Column(): | |
pad_after = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Pad After', info='🔇 How many samples of silence to append after the end.') | |
with gr.Row(): | |
pad_between = gr.Slider(minimum=0, maximum=24000, value=10000, step=1000, label='Pad Between', info='🔇 How many samples of silence to insert between segments.') | |
with gr.Row(): | |
segments = gr.Dataframe(headers=['#', 'Text', 'Tokens', 'Length'], row_count=(1, 'dynamic'), col_count=(4, 'fixed'), label='Segments', interactive=False, wrap=True) | |
segments.change(fn=did_change_segments, inputs=[segments], outputs=[segment_btn, generate_btn]) | |
segment_btn.click(segment_and_tokenize, inputs=[text, voice, skip_square_brackets, newline_split], outputs=[segments]) | |
generate_btn.click(lf_generate, inputs=[segments, voice, speed, reduce_noise, opening_cut, closing_cut, ease_in, ease_out, pad_before, pad_after, pad_between], outputs=[audio]) | |
with gr.Blocks() as app: | |
gr.TabbedInterface( | |
[basic_tts, lf_tts], | |
['Basic TTS', 'Long-Form'], | |
) | |
if __name__ == '__main__': | |
app.queue(api_open=True).launch() | |