Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,9 @@ import random
|
|
6 |
import torch
|
7 |
|
8 |
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
9 |
-
|
10 |
-
S_MAX_CHARS = '∞' if IS_DUPLICATE else str(N_MAX_CHARS)
|
11 |
|
12 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
13 |
-
|
14 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
15 |
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
|
16 |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
@@ -20,8 +18,8 @@ pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
|
20 |
def forward_gpu(ps, ref_s, speed):
|
21 |
return models[True](ps, ref_s, speed)
|
22 |
|
23 |
-
def
|
24 |
-
text = text if
|
25 |
pipeline = pipelines[voice[0]]
|
26 |
pack = pipeline.load_voice(voice)
|
27 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
@@ -46,14 +44,14 @@ def return_audio_ps(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
46 |
def predict(text, voice='af_heart', speed=1):
|
47 |
return return_audio_ps(text, voice, speed, use_gpu=False)[0]
|
48 |
|
49 |
-
def
|
50 |
pipeline = pipelines[voice[0]]
|
51 |
for _, ps, _ in pipeline(text, voice):
|
52 |
return ps
|
53 |
return ''
|
54 |
|
55 |
-
def
|
56 |
-
text = text if
|
57 |
pipeline = pipelines[voice[0]]
|
58 |
pack = pipeline.load_voice(voice)
|
59 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
@@ -133,8 +131,8 @@ with gr.Blocks() as generate_tab:
|
|
133 |
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
134 |
|
135 |
STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
|
136 |
-
if
|
137 |
-
STREAM_NOTE.append(f'✂️ Each stream is capped at {
|
138 |
STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
|
139 |
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
|
140 |
|
@@ -147,12 +145,14 @@ with gr.Blocks() as stream_tab:
|
|
147 |
gr.Markdown(STREAM_NOTE)
|
148 |
gr.DuplicateButton()
|
149 |
|
|
|
|
|
150 |
with gr.Blocks() as app:
|
151 |
with gr.Row():
|
152 |
gr.Markdown('[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://hf.co/hexgrad/Kokoro-82M)', container=True)
|
153 |
with gr.Row():
|
154 |
with gr.Column():
|
155 |
-
text = gr.Textbox(label='Input Text', info=f
|
156 |
with gr.Row():
|
157 |
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
158 |
use_gpu = gr.Dropdown(
|
@@ -164,16 +164,14 @@ with gr.Blocks() as app:
|
|
164 |
)
|
165 |
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
166 |
random_btn = gr.Button('Random Text', variant='secondary')
|
167 |
-
random_btn.click(get_random_text, inputs=[voice], outputs=[text])
|
168 |
with gr.Column():
|
169 |
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
173 |
stop_btn.click(fn=None, cancels=stream_event)
|
174 |
-
predict_btn.click(predict, inputs=[text, voice, speed], outputs=[out_audio])
|
175 |
|
176 |
-
if
|
177 |
-
app.queue(api_open=
|
178 |
-
else:
|
179 |
-
app.queue(api_open=False).launch(show_api=False, ssr_mode=True)
|
|
|
6 |
import torch
|
7 |
|
8 |
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
9 |
+
CHAR_LIMIT = None if IS_DUPLICATE else 5000
|
|
|
10 |
|
11 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
|
|
12 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
13 |
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
|
14 |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
|
|
18 |
def forward_gpu(ps, ref_s, speed):
|
19 |
return models[True](ps, ref_s, speed)
|
20 |
|
21 |
+
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
22 |
+
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
23 |
pipeline = pipelines[voice[0]]
|
24 |
pack = pipeline.load_voice(voice)
|
25 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
|
|
44 |
def predict(text, voice='af_heart', speed=1):
|
45 |
return return_audio_ps(text, voice, speed, use_gpu=False)[0]
|
46 |
|
47 |
+
def tokenize_first(text, voice='af_heart'):
|
48 |
pipeline = pipelines[voice[0]]
|
49 |
for _, ps, _ in pipeline(text, voice):
|
50 |
return ps
|
51 |
return ''
|
52 |
|
53 |
+
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
54 |
+
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
55 |
pipeline = pipelines[voice[0]]
|
56 |
pack = pipeline.load_voice(voice)
|
57 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
|
|
131 |
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
132 |
|
133 |
STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
|
134 |
+
if CHAR_LIMIT is not None:
|
135 |
+
STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.')
|
136 |
STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
|
137 |
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
|
138 |
|
|
|
145 |
gr.Markdown(STREAM_NOTE)
|
146 |
gr.DuplicateButton()
|
147 |
|
148 |
+
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
|
149 |
+
API_NAME = None if API_OPEN else False
|
150 |
with gr.Blocks() as app:
|
151 |
with gr.Row():
|
152 |
gr.Markdown('[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://hf.co/hexgrad/Kokoro-82M)', container=True)
|
153 |
with gr.Row():
|
154 |
with gr.Column():
|
155 |
+
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if IS_DUPLICATE else CHAR_LIMIT} characters per Stream")
|
156 |
with gr.Row():
|
157 |
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
158 |
use_gpu = gr.Dropdown(
|
|
|
164 |
)
|
165 |
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
166 |
random_btn = gr.Button('Random Text', variant='secondary')
|
|
|
167 |
with gr.Column():
|
168 |
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
|
169 |
+
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
|
170 |
+
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
|
171 |
+
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
|
172 |
+
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream], api_name=API_NAME)
|
173 |
stop_btn.click(fn=None, cancels=stream_event)
|
174 |
+
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
175 |
|
176 |
+
if __name__ == '__main__':
|
177 |
+
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
|
|
|
|