Spaces:
Runtime error
Runtime error
Yacine Jernite
commited on
Commit
•
0a10cf1
1
Parent(s):
88c7b12
black
Browse files- posts/conclusion.py +32 -20
- posts/context.py +1 -0
- posts/dataset_exploration.py +81 -30
- posts/model_exploration.py +36 -57
- posts/welcome.py +1 -0
posts/conclusion.py
CHANGED
@@ -19,40 +19,52 @@ Next, please answer the following questions about the information presented in t
|
|
19 |
|
20 |
def run_article():
|
21 |
st.markdown(__KEY_TAKEAWAYS)
|
22 |
-
|
|
|
23 |
"Did you click on any of the links provided in the **Hate Speech in ACM** page? If so, which one did you find most surprising?"
|
24 |
)
|
25 |
-
st.text_area(
|
26 |
"Of the datasets presented in the **Dataset Exploration** page, which one did you think best represented content that should be moderated? Which worst?"
|
27 |
)
|
28 |
-
st.text_area(
|
29 |
"Of the models presented in the **Model Exploration** page, which one did you think performed best? Which worst?"
|
30 |
)
|
31 |
-
st.text_area(
|
32 |
"Any additional comments about the materials?"
|
33 |
)
|
34 |
# from paper
|
35 |
-
st.text_area(
|
36 |
"How would you describe your role? E.g. model developer, dataset developer, domain expert, policy maker, platform manager, community advocate, platform user, student"
|
37 |
)
|
38 |
-
st.text_area(
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
-
st.
|
42 |
-
"Which
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
)
|
44 |
-
st.text_area(
|
45 |
-
"Which
|
46 |
)
|
47 |
-
st.text_area(
|
48 |
-
"
|
49 |
)
|
50 |
-
st.text_area(
|
51 |
-
"
|
52 |
)
|
53 |
-
st.text_area(
|
54 |
-
"
|
55 |
)
|
56 |
-
st.
|
57 |
-
"Do you have any comments or suggestions?"
|
58 |
-
)
|
|
|
19 |
|
20 |
def run_article():
|
21 |
st.markdown(__KEY_TAKEAWAYS)
|
22 |
+
res = {}
|
23 |
+
res["used_links"] = st.text_area(
|
24 |
"Did you click on any of the links provided in the **Hate Speech in ACM** page? If so, which one did you find most surprising?"
|
25 |
)
|
26 |
+
res["dataset_feedback"] = st.text_area(
|
27 |
"Of the datasets presented in the **Dataset Exploration** page, which one did you think best represented content that should be moderated? Which worst?"
|
28 |
)
|
29 |
+
res["model_feedback"] = st.text_area(
|
30 |
"Of the models presented in the **Model Exploration** page, which one did you think performed best? Which worst?"
|
31 |
)
|
32 |
+
res["additional_material"] = st.text_area(
|
33 |
"Any additional comments about the materials?"
|
34 |
)
|
35 |
# from paper
|
36 |
+
res["role"] = st.text_area(
|
37 |
"How would you describe your role? E.g. model developer, dataset developer, domain expert, policy maker, platform manager, community advocate, platform user, student"
|
38 |
)
|
39 |
+
res["interest"] = st.text_area("Why are you interested in content moderation?")
|
40 |
+
res["modules_used"] = st.multiselect(
|
41 |
+
"Which modules did you use the most?",
|
42 |
+
options=[
|
43 |
+
"Welcome - Introduction",
|
44 |
+
"Hate Speech in ACM",
|
45 |
+
"Dataset Exploration",
|
46 |
+
"Model Exploration",
|
47 |
+
],
|
48 |
)
|
49 |
+
res["modules_informative"] = st.selectbox(
|
50 |
+
"Which module did you find the most informative?",
|
51 |
+
options=[
|
52 |
+
"Welcome - Introduction",
|
53 |
+
"Hate Speech in ACM",
|
54 |
+
"Dataset Exploration",
|
55 |
+
"Model Exploration",
|
56 |
+
],
|
57 |
)
|
58 |
+
res["application)interest"] = st.text_area(
|
59 |
+
"Which application were you most interested in learning more about?"
|
60 |
)
|
61 |
+
res["dataset_surprise"] = st.text_area(
|
62 |
+
"What surprised you most about the datasets?"
|
63 |
)
|
64 |
+
res["model_concern"] = st.text_area(
|
65 |
+
"Which models are you most concerned about as a user?"
|
66 |
)
|
67 |
+
res["comments_suggestions"] = st.text_area(
|
68 |
+
"Do you have any comments or suggestions?"
|
69 |
)
|
70 |
+
st.write(res)
|
|
|
|
posts/context.py
CHANGED
@@ -86,6 +86,7 @@ __CRITIC_EXAMPLES = """
|
|
86 |
- [Reddit Self Reflection on Lack of Content Policy](https://www.reddit.com/r/announcements/comments/gxas21/upcoming_changes_to_our_content_policy_our_board/)
|
87 |
"""
|
88 |
|
|
|
89 |
def run_article():
|
90 |
st.markdown("## Automatic Content Moderation (ACM)")
|
91 |
with st.expander("ACM definition", expanded=False):
|
|
|
86 |
- [Reddit Self Reflection on Lack of Content Policy](https://www.reddit.com/r/announcements/comments/gxas21/upcoming_changes_to_our_content_policy_our_board/)
|
87 |
"""
|
88 |
|
89 |
+
|
90 |
def run_article():
|
91 |
st.markdown("## Automatic Content Moderation (ACM)")
|
92 |
with st.expander("ACM definition", expanded=False):
|
posts/dataset_exploration.py
CHANGED
@@ -58,35 +58,82 @@ the labels for those examples, and the distribution of labels within the
|
|
58 |
cluster. Note that cluster 0 will always be the full dataset.
|
59 |
"""
|
60 |
|
61 |
-
DSET_OPTIONS = {
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
}
|
89 |
|
|
|
90 |
@st.cache(allow_output_mutation=True)
|
91 |
def download_tree(args):
|
92 |
clusters = Clustering(**args)
|
@@ -115,7 +162,7 @@ def run_article():
|
|
115 |
|
116 |
pre_args = DSET_OPTIONS[choose_dset]
|
117 |
args = pre_args
|
118 |
-
while not
|
119 |
args = list(args.values())[0]
|
120 |
|
121 |
clustering = download_tree(args)
|
@@ -130,8 +177,12 @@ def run_article():
|
|
130 |
"Visualize cluster node:",
|
131 |
range(len(clustering.node_list)),
|
132 |
)
|
133 |
-
st.markdown(
|
134 |
-
|
|
|
|
|
|
|
|
|
135 |
examplars = clustering.get_node_examplars(show_node)
|
136 |
st.markdown("---\n")
|
137 |
|
|
|
58 |
cluster. Note that cluster 0 will always be the full dataset.
|
59 |
"""
|
60 |
|
61 |
+
DSET_OPTIONS = {
|
62 |
+
"classla/FRENK-hate-en": {
|
63 |
+
"binary": {
|
64 |
+
"train": {
|
65 |
+
("text",): {
|
66 |
+
"label": {
|
67 |
+
100000: {
|
68 |
+
"sentence-transformers/all-mpnet-base-v2": {
|
69 |
+
"tree": {
|
70 |
+
"dataset_name": "classla/FRENK-hate-en",
|
71 |
+
"config_name": "binary",
|
72 |
+
"split_name": "train",
|
73 |
+
"input_field_path": ("text",),
|
74 |
+
"label_name": "label",
|
75 |
+
"num_rows": 100000,
|
76 |
+
"model_name": "sentence-transformers/all-mpnet-base-v2",
|
77 |
+
"file_name": "tree",
|
78 |
+
}
|
79 |
+
}
|
80 |
+
}
|
81 |
+
}
|
82 |
+
}
|
83 |
+
}
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"tweets_hate_speech_detection": {
|
87 |
+
"default": {
|
88 |
+
"train": {
|
89 |
+
("tweet",): {
|
90 |
+
"label": {
|
91 |
+
100000: {
|
92 |
+
"sentence-transformers/all-mpnet-base-v2": {
|
93 |
+
"tree": {
|
94 |
+
"dataset_name": "tweets_hate_speech_detection",
|
95 |
+
"config_name": "default",
|
96 |
+
"split_name": "train",
|
97 |
+
"input_field_path": ("tweet",),
|
98 |
+
"label_name": "label",
|
99 |
+
"num_rows": 100000,
|
100 |
+
"model_name": "sentence-transformers/all-mpnet-base-v2",
|
101 |
+
"file_name": "tree",
|
102 |
+
}
|
103 |
+
}
|
104 |
+
}
|
105 |
+
}
|
106 |
+
}
|
107 |
+
}
|
108 |
+
}
|
109 |
+
},
|
110 |
+
"ucberkeley-dlab/measuring-hate-speech": {
|
111 |
+
"default": {
|
112 |
+
"train": {
|
113 |
+
("text",): {
|
114 |
+
"hatespeech": {
|
115 |
+
100000: {
|
116 |
+
"sentence-transformers/all-mpnet-base-v2": {
|
117 |
+
"tree": {
|
118 |
+
"dataset_name": "ucberkeley-dlab/measuring-hate-speech",
|
119 |
+
"config_name": "default",
|
120 |
+
"split_name": "train",
|
121 |
+
"input_field_path": ("text",),
|
122 |
+
"label_name": "hatespeech",
|
123 |
+
"num_rows": 100000,
|
124 |
+
"model_name": "sentence-transformers/all-mpnet-base-v2",
|
125 |
+
"file_name": "tree",
|
126 |
+
}
|
127 |
+
}
|
128 |
+
}
|
129 |
+
}
|
130 |
+
}
|
131 |
+
}
|
132 |
+
}
|
133 |
+
},
|
134 |
}
|
135 |
|
136 |
+
|
137 |
@st.cache(allow_output_mutation=True)
|
138 |
def download_tree(args):
|
139 |
clusters = Clustering(**args)
|
|
|
162 |
|
163 |
pre_args = DSET_OPTIONS[choose_dset]
|
164 |
args = pre_args
|
165 |
+
while not "dataset_name" in args:
|
166 |
args = list(args.values())[0]
|
167 |
|
168 |
clustering = download_tree(args)
|
|
|
177 |
"Visualize cluster node:",
|
178 |
range(len(clustering.node_list)),
|
179 |
)
|
180 |
+
st.markdown(
|
181 |
+
f"Node {show_node} has {clustering.node_list[show_node]['weight']} examples."
|
182 |
+
)
|
183 |
+
st.markdown(
|
184 |
+
f"Node {show_node} was merged at {clustering.node_list[show_node]['merged_at']:.2f}."
|
185 |
+
)
|
186 |
examplars = clustering.get_node_examplars(show_node)
|
187 |
st.markdown("---\n")
|
188 |
|
posts/model_exploration.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
import streamlit as st
|
2 |
import json
|
3 |
import random
|
4 |
import sys
|
5 |
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
|
|
8 |
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
9 |
from transformers import pipeline
|
10 |
|
@@ -95,31 +95,31 @@ sentence using the tool below.
|
|
95 |
"""
|
96 |
|
97 |
__MODELS = [
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
|
107 |
autopop_ranking = [
|
108 |
[
|
109 |
"I don't hate black people.",
|
110 |
"Black people should die.",
|
111 |
-
"My friend likes pancakes."
|
112 |
],
|
113 |
[
|
114 |
"Those dirty redskins are all drunks.",
|
115 |
"I can't stand Chinese food. It's too spicy.",
|
116 |
-
"I lived near many Chinese people and I hated every single one of them."
|
117 |
],
|
118 |
[
|
119 |
"Stop saying that Mexicans don't belong in our country!",
|
120 |
"We walked along the dyke down the road.",
|
121 |
-
"Ah shit, I fucked up."
|
122 |
-
]
|
123 |
]
|
124 |
|
125 |
# Creates the forms for receiving multiple inputs to compare for a single
|
@@ -130,22 +130,13 @@ def run_article():
|
|
130 |
st.markdown(__HATE_DETECTION)
|
131 |
hc_path = "posts/resources/"
|
132 |
hc_pholders = json.load(
|
133 |
-
open(
|
134 |
-
hc_path + "template_placeholders.json",
|
135 |
-
encoding="utf-8"
|
136 |
-
)
|
137 |
)
|
138 |
hc_templates = json.load(
|
139 |
-
open(
|
140 |
-
hc_path + "hatecheck_category_templates.json",
|
141 |
-
encoding="utf-8"
|
142 |
-
)
|
143 |
)
|
144 |
hc_info = json.load(
|
145 |
-
open(
|
146 |
-
hc_path + "hatecheck_category_info.json",
|
147 |
-
encoding="utf-8"
|
148 |
-
)
|
149 |
)
|
150 |
hc_cats = [""] + list(hc_info.keys())
|
151 |
|
@@ -153,10 +144,8 @@ def run_article():
|
|
153 |
with st.expander("HateCheck Examples", expanded=False):
|
154 |
st.markdown(__HATECHECK)
|
155 |
category = st.selectbox(
|
156 |
-
|
157 |
-
|
158 |
-
key="hc_cat_select"
|
159 |
-
)
|
160 |
if category:
|
161 |
with st.form(key="hate_check"):
|
162 |
hc_cat = hc_info[category]
|
@@ -166,24 +155,22 @@ def run_article():
|
|
166 |
templates.append(hc_temp)
|
167 |
names.append(hc_cat[hc_temp]["name"])
|
168 |
selected_names = st.multiselect(
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
)
|
173 |
num_exs = st.number_input(
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
if st.form_submit_button(label="Generate Examples"):
|
180 |
for name in selected_names:
|
181 |
index = names.index(name)
|
182 |
template = templates[index]
|
183 |
examples = generate_hc_ex(
|
184 |
-
hc_templates[template],
|
185 |
-
hc_pholders,
|
186 |
-
num_exs
|
187 |
)
|
188 |
st.header(name)
|
189 |
st.subheader("Label: " + hc_cat[template]["value"])
|
@@ -215,12 +202,12 @@ def run_article():
|
|
215 |
input_3 = st.text_input(
|
216 |
"Input 3",
|
217 |
help="Try a phrase like 'Good morning'",
|
218 |
-
#placeholder="Good morning."
|
219 |
)
|
220 |
autopop = st.checkbox(
|
221 |
-
|
222 |
key="rank_autopop_ckbx",
|
223 |
-
help="Check this box to run the model with 3 preselected sentences."
|
224 |
)
|
225 |
if st.form_submit_button(label="Rank inputs"):
|
226 |
if autopop:
|
@@ -246,9 +233,9 @@ def run_article():
|
|
246 |
key="compare_model_2",
|
247 |
)
|
248 |
autopop = st.checkbox(
|
249 |
-
|
250 |
key="comp_autopop_ckbx",
|
251 |
-
help="Check this box to compare the models with a preselected sentence."
|
252 |
)
|
253 |
input_text = st.text_input("Comparison input")
|
254 |
if st.form_submit_button(label="Compare models"):
|
@@ -257,16 +244,11 @@ def run_article():
|
|
257 |
results = run_compare(model_name_1, model_name_2, input_text)
|
258 |
st.write("### Showing results for: " + input_text)
|
259 |
st.dataframe(results)
|
260 |
-
outside_ds = [
|
261 |
-
"hatecheck",
|
262 |
-
"dynabench",
|
263 |
-
"hatefulmemes",
|
264 |
-
"opensubtitles"
|
265 |
-
]
|
266 |
name_1_short = model_name_1.split("/")[1]
|
267 |
name_2_short = model_name_2.split("/")[1]
|
268 |
for calib_ds in outside_ds:
|
269 |
-
ds_loc = "posts/resources/charts/" + calib_ds + "/"
|
270 |
images, captions = [], []
|
271 |
for model in [name_1_short, name_2_short]:
|
272 |
images.append(ds_loc + model + "_" + calib_ds + ".png")
|
@@ -274,6 +256,7 @@ def run_article():
|
|
274 |
st.write("#### Model performance comparison on " + calib_ds)
|
275 |
st.image(images, captions)
|
276 |
|
|
|
277 |
# if model_name_1 == "Hate-speech-CNERG/dehatebert-mono-english":
|
278 |
# st.image("posts/resources/dehatebert-mono-english_calibration.png")
|
279 |
# elif model_name_1 == "cardiffnlp/twitter-roberta-base-hate":
|
@@ -303,11 +286,7 @@ def generate_hc_ex(template, placeholders, gen_num):
|
|
303 |
# Runs the received input strings through the given model and returns the
|
304 |
# all scores for all possible labels as a DataFrame
|
305 |
def run_ranked(model, input_list):
|
306 |
-
classifier = pipeline(
|
307 |
-
"text-classification",
|
308 |
-
model=model,
|
309 |
-
return_all_scores=True
|
310 |
-
)
|
311 |
output = {}
|
312 |
results = classifier(input_list)
|
313 |
for result in results:
|
|
|
|
|
1 |
import json
|
2 |
import random
|
3 |
import sys
|
4 |
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
+
import streamlit as st
|
8 |
# from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
9 |
from transformers import pipeline
|
10 |
|
|
|
95 |
"""
|
96 |
|
97 |
__MODELS = [
|
98 |
+
"classla/roberta-base-frenk-hate",
|
99 |
+
"cardiffnlp/twitter-roberta-base-hate",
|
100 |
+
"Hate-speech-CNERG/dehatebert-mono-english",
|
101 |
+
"facebook/roberta-hate-speech-dynabench-r1-target",
|
102 |
+
"facebook/roberta-hate-speech-dynabench-r2-target",
|
103 |
+
"facebook/roberta-hate-speech-dynabench-r3-target",
|
104 |
+
"facebook/roberta-hate-speech-dynabench-r4-target",
|
105 |
+
]
|
106 |
|
107 |
autopop_ranking = [
|
108 |
[
|
109 |
"I don't hate black people.",
|
110 |
"Black people should die.",
|
111 |
+
"My friend likes pancakes.",
|
112 |
],
|
113 |
[
|
114 |
"Those dirty redskins are all drunks.",
|
115 |
"I can't stand Chinese food. It's too spicy.",
|
116 |
+
"I lived near many Chinese people and I hated every single one of them.",
|
117 |
],
|
118 |
[
|
119 |
"Stop saying that Mexicans don't belong in our country!",
|
120 |
"We walked along the dyke down the road.",
|
121 |
+
"Ah shit, I fucked up.",
|
122 |
+
],
|
123 |
]
|
124 |
|
125 |
# Creates the forms for receiving multiple inputs to compare for a single
|
|
|
130 |
st.markdown(__HATE_DETECTION)
|
131 |
hc_path = "posts/resources/"
|
132 |
hc_pholders = json.load(
|
133 |
+
open(hc_path + "template_placeholders.json", encoding="utf-8")
|
|
|
|
|
|
|
134 |
)
|
135 |
hc_templates = json.load(
|
136 |
+
open(hc_path + "hatecheck_category_templates.json", encoding="utf-8")
|
|
|
|
|
|
|
137 |
)
|
138 |
hc_info = json.load(
|
139 |
+
open(hc_path + "hatecheck_category_info.json", encoding="utf-8")
|
|
|
|
|
|
|
140 |
)
|
141 |
hc_cats = [""] + list(hc_info.keys())
|
142 |
|
|
|
144 |
with st.expander("HateCheck Examples", expanded=False):
|
145 |
st.markdown(__HATECHECK)
|
146 |
category = st.selectbox(
|
147 |
+
"Select a category of examples from HateCheck", hc_cats, key="hc_cat_select"
|
148 |
+
)
|
|
|
|
|
149 |
if category:
|
150 |
with st.form(key="hate_check"):
|
151 |
hc_cat = hc_info[category]
|
|
|
155 |
templates.append(hc_temp)
|
156 |
names.append(hc_cat[hc_temp]["name"])
|
157 |
selected_names = st.multiselect(
|
158 |
+
"Select one or more HateCheck templates to generate examples for",
|
159 |
+
names,
|
160 |
+
key="hc_temp_multiselect",
|
161 |
)
|
162 |
num_exs = st.number_input(
|
163 |
+
"Select a number of examples to generate for each selected template",
|
164 |
+
min_value=1,
|
165 |
+
max_value=5,
|
166 |
+
value=3,
|
167 |
+
)
|
168 |
if st.form_submit_button(label="Generate Examples"):
|
169 |
for name in selected_names:
|
170 |
index = names.index(name)
|
171 |
template = templates[index]
|
172 |
examples = generate_hc_ex(
|
173 |
+
hc_templates[template], hc_pholders, num_exs
|
|
|
|
|
174 |
)
|
175 |
st.header(name)
|
176 |
st.subheader("Label: " + hc_cat[template]["value"])
|
|
|
202 |
input_3 = st.text_input(
|
203 |
"Input 3",
|
204 |
help="Try a phrase like 'Good morning'",
|
205 |
+
# placeholder="Good morning."
|
206 |
)
|
207 |
autopop = st.checkbox(
|
208 |
+
"Choose examples for me",
|
209 |
key="rank_autopop_ckbx",
|
210 |
+
help="Check this box to run the model with 3 preselected sentences.",
|
211 |
)
|
212 |
if st.form_submit_button(label="Rank inputs"):
|
213 |
if autopop:
|
|
|
233 |
key="compare_model_2",
|
234 |
)
|
235 |
autopop = st.checkbox(
|
236 |
+
"Choose an example for me",
|
237 |
key="comp_autopop_ckbx",
|
238 |
+
help="Check this box to compare the models with a preselected sentence.",
|
239 |
)
|
240 |
input_text = st.text_input("Comparison input")
|
241 |
if st.form_submit_button(label="Compare models"):
|
|
|
244 |
results = run_compare(model_name_1, model_name_2, input_text)
|
245 |
st.write("### Showing results for: " + input_text)
|
246 |
st.dataframe(results)
|
247 |
+
outside_ds = ["hatecheck", "dynabench", "hatefulmemes", "opensubtitles"]
|
|
|
|
|
|
|
|
|
|
|
248 |
name_1_short = model_name_1.split("/")[1]
|
249 |
name_2_short = model_name_2.split("/")[1]
|
250 |
for calib_ds in outside_ds:
|
251 |
+
ds_loc = "posts/resources/charts/" + calib_ds + "/"
|
252 |
images, captions = [], []
|
253 |
for model in [name_1_short, name_2_short]:
|
254 |
images.append(ds_loc + model + "_" + calib_ds + ".png")
|
|
|
256 |
st.write("#### Model performance comparison on " + calib_ds)
|
257 |
st.image(images, captions)
|
258 |
|
259 |
+
|
260 |
# if model_name_1 == "Hate-speech-CNERG/dehatebert-mono-english":
|
261 |
# st.image("posts/resources/dehatebert-mono-english_calibration.png")
|
262 |
# elif model_name_1 == "cardiffnlp/twitter-roberta-base-hate":
|
|
|
286 |
# Runs the received input strings through the given model and returns the
|
287 |
# all scores for all possible labels as a DataFrame
|
288 |
def run_ranked(model, input_list):
|
289 |
+
classifier = pipeline("text-classification", model=model, return_all_scores=True)
|
|
|
|
|
|
|
|
|
290 |
output = {}
|
291 |
results = classifier(input_list)
|
292 |
for result in results:
|
posts/welcome.py
CHANGED
@@ -55,6 +55,7 @@ __MODEL_LIST = """
|
|
55 |
- [RoBERTa trained on 11 English hate speech datasets and Rounds 1, 2, and 3 of the Dynamically Generated Hate Speech Dataset](https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target)
|
56 |
"""
|
57 |
|
|
|
58 |
def run_article():
|
59 |
st.markdown("# Welcome!")
|
60 |
st.markdown(__INTRO_TEXT)
|
|
|
55 |
- [RoBERTa trained on 11 English hate speech datasets and Rounds 1, 2, and 3 of the Dynamically Generated Hate Speech Dataset](https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target)
|
56 |
"""
|
57 |
|
58 |
+
|
59 |
def run_article():
|
60 |
st.markdown("# Welcome!")
|
61 |
st.markdown(__INTRO_TEXT)
|