hgdgng commited on
Commit
20f65ba
1 Parent(s): b6cb974

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -26
app.py CHANGED
@@ -1,36 +1,100 @@
 
 
1
  import requests
2
  import torch
3
- from PIL import Image
4
- from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B")
 
 
 
 
 
 
 
 
 
 
7
 
8
- # Load model directly
9
- from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
 
 
 
 
 
 
 
10
 
11
- tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
12
- model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
13
 
14
- # Load the processor
15
- processor = AutoProcessor.from_pretrained(model_id)
16
 
 
 
 
 
 
17
 
18
- # Define the function to generate text based on input prompt
19
- def generate_text(prompt):
20
- if llm_pipeline is None:
21
- return "Error: Model not loaded."
22
- result = llm_pipeline(prompt, max_length=100, num_return_sequences=1)
23
- return result[0]['generated_text']
 
 
 
 
 
 
24
 
25
- # Create the Gradio interface
26
- interface = gr.Interface(
27
- fn=generate_text,
28
- inputs=gr.Textbox(lines=7, label="Input Prompt"),
29
- outputs="text",
30
- title="Large Language Model Text Generation",
31
- description="Enter a prompt to generate text using a large language model."
32
- )
33
 
34
- print("Launching the Gradio interface...")
35
- # Launch the interface
36
- interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
2
+ from PIL import Image
3
  import requests
4
  import torch
5
+ from threading import Thread
6
+ import gradio as gr
7
+ from gradio import FileData
8
+ import time
9
+ import spaces
10
+ ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
11
+ model = MllamaForConditionalGeneration.from_pretrained(ckpt,
12
+ torch_dtype=torch.bfloat16).to("cuda")
13
+ processor = AutoProcessor.from_pretrained(ckpt)
14
+
15
+
16
+ @spaces.GPU
17
+ def bot_streaming(message, history, max_new_tokens=250):
18
+
19
+ txt = message["text"]
20
+ ext_buffer = f"{txt}"
21
+
22
+ messages= []
23
+ images = []
24
+
25
 
26
+ for i, msg in enumerate(history):
27
+ if isinstance(msg[0], tuple):
28
+ messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
29
+ messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
30
+ images.append(Image.open(msg[0][0]).convert("RGB"))
31
+ elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
32
+ # messages are already handled
33
+ pass
34
+ elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
35
+ messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
36
+ messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
37
 
38
+ # add current message
39
+ if len(message["files"]) == 1:
40
+
41
+ if isinstance(message["files"][0], str): # examples
42
+ image = Image.open(message["files"][0]).convert("RGB")
43
+ else: # regular input
44
+ image = Image.open(message["files"][0]["path"]).convert("RGB")
45
+ images.append(image)
46
+ messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
47
+ else:
48
+ messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
49
 
 
 
50
 
51
+ texts = processor.apply_chat_template(messages, add_generation_prompt=True)
 
52
 
53
+ if images == []:
54
+ inputs = processor(text=texts, return_tensors="pt").to("cuda")
55
+ else:
56
+ inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
57
+ streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
58
 
59
+ generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
60
+ generated_text = ""
61
+
62
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
63
+ thread.start()
64
+ buffer = ""
65
+
66
+ for new_text in streamer:
67
+ buffer += new_text
68
+ generated_text_without_prompt = buffer
69
+ time.sleep(0.01)
70
+ yield buffer
71
 
 
 
 
 
 
 
 
 
72
 
73
+ demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[
74
+ [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]},
75
+ 200],
76
+ [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]},
77
+ 250],
78
+ [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]},
79
+ 250],
80
+ [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]},
81
+ 250],
82
+ [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]},
83
+ 250],
84
+ ],
85
+ textbox=gr.MultimodalTextbox(),
86
+ additional_inputs = [gr.Slider(
87
+ minimum=10,
88
+ maximum=500,
89
+ value=250,
90
+ step=10,
91
+ label="Maximum number of new tokens to generate",
92
+ )
93
+ ],
94
+ cache_examples=False,
95
+ description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
96
+ stop_btn="Stop Generation",
97
+ fill_height=True,
98
+ multimodal=True)
99
+
100
+ demo.launch(debug=True)