Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the large language model (LLM)
|
5 |
+
try:
|
6 |
+
print("Loading the language model...")
|
7 |
+
llm_pipeline = pipeline("text-generation", model="Llama-3.2-11B-Vision-Instruct") # You can use a different model here
|
8 |
+
print("Model loaded successfully!")
|
9 |
+
except Exception as e:
|
10 |
+
print(f"Error loading model: {e}")
|
11 |
+
llm_pipeline = None
|
12 |
+
|
13 |
+
# Define the function to generate text based on input prompt
|
14 |
+
def generate_text(prompt):
|
15 |
+
if llm_pipeline is None:
|
16 |
+
return "Error: Model not loaded."
|
17 |
+
result = llm_pipeline(prompt, max_length=100, num_return_sequences=1)
|
18 |
+
return result[0]['generated_text']
|
19 |
+
|
20 |
+
# Create the Gradio interface
|
21 |
+
interface = gr.Interface(
|
22 |
+
fn=generate_text,
|
23 |
+
inputs=gr.Textbox(lines=7, label="Input Prompt"),
|
24 |
+
outputs="text",
|
25 |
+
title="Large Language Model Text Generation",
|
26 |
+
description="Enter a prompt to generate text using a large language model."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
|
29 |
+
print("Launching the Gradio interface...")
|
30 |
+
# Launch the interface
|
31 |
+
interface.launch()
|