hgdgng commited on
Commit
d0df95e
1 Parent(s): f596be4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -60
app.py CHANGED
@@ -1,63 +1,31 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load the large language model (LLM)
5
+ try:
6
+ print("Loading the language model...")
7
+ llm_pipeline = pipeline("text-generation", model="Llama-3.2-11B-Vision-Instruct") # You can use a different model here
8
+ print("Model loaded successfully!")
9
+ except Exception as e:
10
+ print(f"Error loading model: {e}")
11
+ llm_pipeline = None
12
+
13
+ # Define the function to generate text based on input prompt
14
+ def generate_text(prompt):
15
+ if llm_pipeline is None:
16
+ return "Error: Model not loaded."
17
+ result = llm_pipeline(prompt, max_length=100, num_return_sequences=1)
18
+ return result[0]['generated_text']
19
+
20
+ # Create the Gradio interface
21
+ interface = gr.Interface(
22
+ fn=generate_text,
23
+ inputs=gr.Textbox(lines=7, label="Input Prompt"),
24
+ outputs="text",
25
+ title="Large Language Model Text Generation",
26
+ description="Enter a prompt to generate text using a large language model."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  )
28
 
29
+ print("Launching the Gradio interface...")
30
+ # Launch the interface
31
+ interface.launch()