Spaces:
No application file
No application file
import numpy as np | |
import math | |
import torch | |
from torch.autograd import Variable | |
import torch.nn.functional as functional | |
from utils.data import multiple_replace, get_synonym | |
def no_peeking_mask(size, device): | |
""" | |
Tạo mask được sử dụng trong decoder để lúc dự đoán trong quá trình huấn luyện | |
mô hình không nhìn thấy được các từ ở tương lai | |
""" | |
np_mask = np.triu(np.ones((1, size, size)), | |
k=1).astype('uint8') | |
np_mask = Variable(torch.from_numpy(np_mask) == 0) | |
np_mask = np_mask.to(device) | |
return np_mask | |
def create_masks(src, trg, src_pad, trg_pad, device): | |
""" Tạo mask cho encoder, | |
để mô hình không bỏ qua thông tin của các kí tự PAD do chúng ta thêm vào | |
""" | |
src_mask = (src != src_pad).unsqueeze(-2) | |
if trg is not None: | |
trg_mask = (trg != trg_pad).unsqueeze(-2) | |
size = trg.size(1) # get seq_len for matrix | |
np_mask = no_peeking_mask(size, device) | |
if trg.is_cuda: | |
np_mask.cuda() | |
trg_mask = trg_mask & np_mask | |
else: | |
trg_mask = None | |
return src_mask, trg_mask | |
def init_vars(src, model, SRC, TRG, device, k, max_len): | |
""" Tính toán các ma trận cần thiết trong quá trình translation sau khi mô hình học xong | |
""" | |
init_tok = TRG.vocab.stoi['<sos>'] | |
src_mask = (src != SRC.vocab.stoi['<pad>']).unsqueeze(-2) | |
# tính sẵn output của encoder | |
e_output = model.encoder(src, src_mask) | |
outputs = torch.LongTensor([[init_tok]]) | |
outputs = outputs.to(device) | |
trg_mask = no_peeking_mask(1, device) | |
# dự đoán kí tự đầu tiên | |
out = model.out(model.decoder(outputs, | |
e_output, src_mask, trg_mask)) | |
out = functional.softmax(out, dim=-1) | |
probs, ix = out[:, -1].data.topk(k) | |
log_scores = torch.Tensor([math.log(prob) for prob in probs.data[0]]).unsqueeze(0) | |
outputs = torch.zeros(k, max_len).long() | |
outputs = outputs.to(device) | |
outputs[:, 0] = init_tok | |
outputs[:, 1] = ix[0] | |
e_outputs = torch.zeros(k, e_output.size(-2),e_output.size(-1)) | |
e_outputs = e_outputs.to(device) | |
e_outputs[:, :] = e_output[0] | |
return outputs, e_outputs, log_scores | |
def k_best_outputs(outputs, out, log_scores, i, k): | |
# debug print | |
probs, ix = out[:, -1].data.topk(k) | |
log_probs = torch.Tensor([math.log(p) for p in probs.data.view(-1)]).view(k, -1) + log_scores.transpose(0,1) | |
k_probs, k_ix = log_probs.view(-1).topk(k) | |
row = k_ix // k | |
col = k_ix % k | |
outputs[:, :i] = outputs[row, :i] | |
outputs[:, i] = ix[row, col] | |
log_scores = k_probs.unsqueeze(0) | |
return outputs, log_scores | |
def beam_search(src, model, SRC, TRG, device, k, max_len, debug=False, output_list_of_tokens=False): | |
outputs, e_outputs, log_scores = init_vars(src, model, SRC, TRG, device, k, max_len) | |
eos_tok = TRG.vocab.stoi['<eos>'] | |
src_mask = (src != SRC.vocab.stoi['<pad>']).unsqueeze(-2) | |
ind = None | |
for i in range(2, max_len): | |
if(debug): | |
print("Current iteration to maxlen: {:d}".format(i)) | |
trg_mask = no_peeking_mask(i, device) | |
out = model.out(model.decoder(outputs[:,:i], e_outputs, src_mask, trg_mask)) | |
out = functional.softmax(out, dim=-1) | |
outputs, log_scores = k_best_outputs(outputs, out, log_scores, i, k) | |
ones = (outputs==eos_tok).nonzero() # Occurrences of end symbols for all input sentences. | |
sentence_lengths = torch.zeros(len(outputs), dtype=torch.long).to(device) | |
for vec in ones: | |
i = vec[0] | |
if sentence_lengths[i]==0: # First end symbol has not been found yet | |
sentence_lengths[i] = vec[1] # Position of first end symbol | |
num_finished_sentences = len([s for s in sentence_lengths if s > 0]) | |
if num_finished_sentences == k: | |
alpha = 0.7 | |
div = 1/(sentence_lengths.type_as(log_scores)**alpha) | |
_, ind = torch.max(log_scores * div, 1) | |
ind = ind.data[0] | |
break | |
# additional change to output list of tokens instead of string | |
join_fn = (lambda x: x) if(output_list_of_tokens) else (lambda x: " ".join(x)) | |
if ind is None: | |
length = (outputs[0]==eos_tok).nonzero()[0] if len((outputs[0]==eos_tok).nonzero()) > 0 else -1 | |
return join_fn([TRG.vocab.itos[tok] for tok in outputs[0, 1:length]]) | |
else: | |
length = (outputs[ind]==eos_tok).nonzero()[0] | |
return join_fn([TRG.vocab.itos[tok] for tok in outputs[ind, 1:length]]) | |
def translate_sentence(raw_sentence, model, SRC, TRG, device, k, max_len, debug=False, output_list_of_tokens=False): | |
"""Dịch một câu sử dụng beamsearch | |
""" | |
model.eval() | |
indexed = [] | |
if(isinstance(raw_sentence, str)): | |
# single sentence, require preprocessing | |
sentence = SRC.preprocess(raw_sentence) | |
else: | |
# already tokenized (taken from iterators, etc.) | |
sentence = raw_sentence | |
for tok in sentence: | |
if SRC.vocab.stoi[tok] != SRC.vocab.stoi['<eos>']: | |
indexed.append(SRC.vocab.stoi[tok]) | |
else: | |
indexed.append(get_synonym(tok, SRC)) | |
output = Variable(torch.LongTensor([indexed])) | |
output = output.to(device) | |
output = beam_search(output, model, SRC, TRG, device, k, max_len, output_list_of_tokens=output_list_of_tokens) | |
if(debug): | |
print("{} -> {}".format(raw_sentence, output)) | |
return output | |
# return multiple_replace({' ?' : '?',' !':'!',' .':'.','\' ':'\'',' ,':','}, sentence) | |