Spaces:
No application file
No application file
import torch | |
import torch.nn as nn | |
class LabelSmoothingLoss(nn.Module): | |
def __init__(self, classes, padding_idx, smoothing=0.0, dim=-1): | |
super(LabelSmoothingLoss, self).__init__() | |
self.confidence = 1.0 - smoothing | |
self.smoothing = smoothing | |
self.cls = classes | |
self.dim = dim | |
self.padding_idx = padding_idx | |
def forward(self, pred, target): | |
pred = pred.log_softmax(dim=self.dim) | |
with torch.no_grad(): | |
# true_dist = pred.data.clone() | |
true_dist = torch.zeros_like(pred) | |
true_dist.fill_(self.smoothing / (self.cls - 2)) | |
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) | |
true_dist[:, self.padding_idx] = 0 | |
mask = torch.nonzero(target.data == self.padding_idx) #, as_tuple=False is redundant and causing error | |
if mask.dim() > 0: | |
true_dist.index_fill_(0, mask.squeeze(), 0.0) | |
return torch.mean(torch.sum(-true_dist * pred, dim=self.dim)) | |