Zekun Wu
update
0a026c0
raw
history blame
869 Bytes
import streamlit as st
from evaluator import evaluator
st.title('Natural Language Explanation Demo')
model_name = st.selectbox('Select a model:', ['gpt4-1106', 'gpt35-1106'])
question = st.text_input('Enter question:', '')
explaination = st.text_input('Enter explanation:', '')
if st.button('Evaluate Explanation'):
# print the question and explanation
st.write('### Question')
st.write(question)
st.write('### Explanation')
st.write(explaination)
# Evaluate the question and expl
if question and explaination:
eval = evaluator(model_name)
scores = eval(question,explaination) # You need to handle the model logic
st.write('### Scores')
for principle, score in scores.items():
st.write(f"{principle}: {score}")
else:
st.write('Please enter question and explanation to evaluate')