Zekun Wu commited on
Commit
5af5671
·
1 Parent(s): 3e74664
Files changed (2) hide show
  1. pages/2_Evaluation.py +14 -1
  2. util/plot.py +56 -0
pages/2_Evaluation.py CHANGED
@@ -1,10 +1,11 @@
1
  import os
2
 
 
3
  import streamlit as st
4
  import pandas as pd
5
  from io import StringIO
6
  from util.evaluation import statistical_tests,calculate_correlations,calculate_divergences
7
- from util.plot import create_score_plot,create_rank_plots,create_correlation_heatmaps
8
  import plotly.express as px
9
 
10
 
@@ -53,6 +54,18 @@ def app():
53
 
54
  st.write('Test Results:', results_df)
55
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  score_fig = create_score_plot(df)
57
  st.plotly_chart(score_fig)
58
 
 
1
  import os
2
 
3
+ import numpy as np
4
  import streamlit as st
5
  import pandas as pd
6
  from io import StringIO
7
  from util.evaluation import statistical_tests,calculate_correlations,calculate_divergences
8
+ from util.plot import create_score_plot,create_rank_plots,create_correlation_heatmaps,create_3d_plot,calculate_distances
9
  import plotly.express as px
10
 
11
 
 
54
 
55
  st.write('Test Results:', results_df)
56
 
57
+ fig_3d = create_3d_plot(data)
58
+
59
+ st.plotly_chart(fig_3d)
60
+
61
+ # Calculate and display average distance
62
+ point_A = np.array([0, 0, 0])
63
+ point_B = np.array([10, 10, 10])
64
+ distances = calculate_distances(data, point_A, point_B)
65
+ average_distance = distances.mean()
66
+ st.write(f'Average distance to the ideal line: {average_distance}')
67
+
68
+
69
  score_fig = create_score_plot(df)
70
  st.plotly_chart(score_fig)
71
 
util/plot.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import pandas as pd
2
  import plotly.graph_objs as go
3
  import plotly.express as px
@@ -100,3 +101,58 @@ def create_correlation_heatmaps(df):
100
  figs[title] = fig
101
 
102
  return figs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
  import pandas as pd
3
  import plotly.graph_objs as go
4
  import plotly.express as px
 
101
  figs[title] = fig
102
 
103
  return figs
104
+
105
+
106
+ def point_to_line_distance(point, A, B):
107
+ """Calculate the distance from a point to a line defined by two points A and B."""
108
+ line_vec = B - A
109
+ point_vec = point - A
110
+ line_len = np.linalg.norm(line_vec)
111
+ line_unitvec = line_vec / line_len
112
+ point_vec_scaled = point_vec / line_len
113
+ t = np.dot(line_unitvec, point_vec_scaled)
114
+ nearest = line_vec * t
115
+ dist = np.linalg.norm(nearest - point_vec)
116
+ return dist
117
+
118
+
119
+ def calculate_distances(data, point_A, point_B):
120
+ distances = data.apply(lambda row: point_to_line_distance(
121
+ np.array([row['Privilege_Avg_Score'], row['Protect_Avg_Score'], row['Neutral_Avg_Score']]),
122
+ point_A, point_B), axis=1)
123
+ return distances
124
+
125
+
126
+ def create_3d_plot(data):
127
+ # Define the ideal line (from point A to point B)
128
+ point_A = np.array([0, 0, 0])
129
+ point_B = np.array([10, 10, 10])
130
+
131
+ # Calculate distances
132
+ distances = calculate_distances(data, point_A, point_B)
133
+ data['Distance_to_Ideal'] = distances
134
+
135
+ # Label points that perfectly match the ideal line (distance close to 0)
136
+ tolerance = 1e-6
137
+ data['Perfect_Match'] = data['Distance_to_Ideal'].apply(lambda x: 'Yes' if x < tolerance else 'No')
138
+
139
+ # Create a 3D scatter plot of the scores
140
+ fig_3d = px.scatter_3d(data, x='Privilege_Avg_Score', y='Protect_Avg_Score', z='Neutral_Avg_Score',
141
+ color='Distance_to_Ideal', symbol='Perfect_Match',
142
+ hover_data={
143
+ 'Occupation': True,
144
+ 'Role': True,
145
+ 'Privilege_Avg_Score': True,
146
+ 'Protect_Avg_Score': True,
147
+ 'Neutral_Avg_Score': True,
148
+ 'Distance_to_Ideal': True,
149
+ 'Perfect_Match': True
150
+ },
151
+ title='Occupation and Role Clusters based on Scores with Distance to Ideal Line')
152
+
153
+ # Add ideal line where Neutral = Protect = Privilege
154
+ ideal_line = go.Scatter3d(x=[0, 10], y=[0, 10], z=[0, 10], mode='lines', name='Ideal Line',
155
+ line=dict(color='green', dash='dash'))
156
+ fig_3d.add_trace(ideal_line)
157
+
158
+ return fig_3d