Spaces:
Running
Running
Zekun Wu
commited on
Commit
·
8a73f6f
1
Parent(s):
a7984de
update
Browse files- util/evaluation.py +13 -4
util/evaluation.py
CHANGED
@@ -7,6 +7,7 @@ from scipy.stats import spearmanr, pearsonr, kendalltau, entropy
|
|
7 |
from scipy.spatial.distance import jensenshannon
|
8 |
from scipy.stats import ttest_ind, friedmanchisquare, rankdata, ttest_rel
|
9 |
from statsmodels.stats.multicomp import pairwise_tukeyhsd
|
|
|
10 |
|
11 |
# def bootstrap_t_test(data1, data2, num_bootstrap=1000):
|
12 |
# """Perform a bootstrapped t-test."""
|
@@ -24,18 +25,26 @@ from statsmodels.stats.multicomp import pairwise_tukeyhsd
|
|
24 |
# p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap
|
25 |
# return observed_t_stat, p_value
|
26 |
|
|
|
27 |
def bootstrap_t_test(data1, data2, num_bootstrap=1000):
|
28 |
-
"""Perform a bootstrapped paired t-test."""
|
29 |
-
|
30 |
differences = data1 - data2
|
|
|
|
|
|
|
31 |
t_stats = []
|
32 |
|
33 |
for _ in range(num_bootstrap):
|
34 |
-
# Resample with replacement
|
35 |
resampled_diffs = np.random.choice(differences, size=len(differences), replace=True)
|
36 |
-
|
|
|
|
|
37 |
t_stats.append(t_stat)
|
38 |
|
|
|
|
|
39 |
p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap
|
40 |
return observed_t_stat, p_value
|
41 |
|
|
|
7 |
from scipy.spatial.distance import jensenshannon
|
8 |
from scipy.stats import ttest_ind, friedmanchisquare, rankdata, ttest_rel
|
9 |
from statsmodels.stats.multicomp import pairwise_tukeyhsd
|
10 |
+
from scipy.stats import ttest_1samp
|
11 |
|
12 |
# def bootstrap_t_test(data1, data2, num_bootstrap=1000):
|
13 |
# """Perform a bootstrapped t-test."""
|
|
|
25 |
# p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap
|
26 |
# return observed_t_stat, p_value
|
27 |
|
28 |
+
|
29 |
def bootstrap_t_test(data1, data2, num_bootstrap=1000):
|
30 |
+
"""Perform a bootstrapped paired t-test for mean difference being zero."""
|
31 |
+
# Calculate the observed differences between paired samples
|
32 |
differences = data1 - data2
|
33 |
+
# Compute the observed t-statistic for the differences
|
34 |
+
observed_t_stat, _ = ttest_1samp(differences, 0)
|
35 |
+
|
36 |
t_stats = []
|
37 |
|
38 |
for _ in range(num_bootstrap):
|
39 |
+
# Resample the differences with replacement
|
40 |
resampled_diffs = np.random.choice(differences, size=len(differences), replace=True)
|
41 |
+
# Perform a one-sample t-test on the resampled differences against zero
|
42 |
+
t_stat, _ = ttest_1samp(resampled_diffs, 0)
|
43 |
+
# Append the t-statistic to the list
|
44 |
t_stats.append(t_stat)
|
45 |
|
46 |
+
# Calculate the p-value as the proportion of bootstrap t-statistics
|
47 |
+
# that are as extreme as or more extreme than the observed t-statistic
|
48 |
p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap
|
49 |
return observed_t_stat, p_value
|
50 |
|