Spaces:
Running
Running
PerryCheng614
commited on
Commit
·
76578bc
1
Parent(s):
99e4ea3
initial check-in gradio vlm UI
Browse files- app.py +85 -0
- example_images/example_1.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import websockets
|
3 |
+
import asyncio
|
4 |
+
import json
|
5 |
+
import base64
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
|
9 |
+
async def process_image_stream(image_path, prompt, max_tokens=512):
|
10 |
+
"""
|
11 |
+
Process image with streaming response via WebSocket
|
12 |
+
"""
|
13 |
+
if not image_path:
|
14 |
+
yield "Please upload an image first."
|
15 |
+
return
|
16 |
+
|
17 |
+
try:
|
18 |
+
# Read and convert image to base64
|
19 |
+
with Image.open(image_path) as img:
|
20 |
+
img = img.convert('RGB')
|
21 |
+
buffer = io.BytesIO()
|
22 |
+
img.save(buffer, format="JPEG")
|
23 |
+
base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
24 |
+
|
25 |
+
# Connect to WebSocket
|
26 |
+
async with websockets.connect('wss://nexa-omni.nexa4ai.com/ws/process-image/') as websocket:
|
27 |
+
# Send image data and parameters as JSON
|
28 |
+
await websocket.send(json.dumps({
|
29 |
+
"image": f"data:image/jpeg;base64,{base64_image}",
|
30 |
+
"prompt": prompt,
|
31 |
+
"task": "instruct", # Fixed to instruct
|
32 |
+
"max_tokens": max_tokens
|
33 |
+
}))
|
34 |
+
|
35 |
+
# Initialize response
|
36 |
+
response = ""
|
37 |
+
|
38 |
+
# Receive streaming response
|
39 |
+
async for message in websocket:
|
40 |
+
try:
|
41 |
+
data = json.loads(message)
|
42 |
+
if data["status"] == "generating":
|
43 |
+
response += data["token"]
|
44 |
+
yield response
|
45 |
+
elif data["status"] == "complete":
|
46 |
+
break
|
47 |
+
elif data["status"] == "error":
|
48 |
+
yield f"Error: {data['error']}"
|
49 |
+
break
|
50 |
+
except json.JSONDecodeError:
|
51 |
+
continue
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
yield f"Error connecting to server: {str(e)}"
|
55 |
+
|
56 |
+
# Create Gradio interface
|
57 |
+
demo = gr.Interface(
|
58 |
+
fn=process_image_stream,
|
59 |
+
inputs=[
|
60 |
+
gr.Image(type="filepath", label="Upload Image"),
|
61 |
+
gr.Textbox(
|
62 |
+
label="Question",
|
63 |
+
placeholder="Ask a question about the image...",
|
64 |
+
value="Describe this image"
|
65 |
+
),
|
66 |
+
gr.Slider(
|
67 |
+
minimum=50,
|
68 |
+
maximum=200,
|
69 |
+
value=200,
|
70 |
+
step=1,
|
71 |
+
label="Max Tokens"
|
72 |
+
)
|
73 |
+
],
|
74 |
+
outputs=gr.Textbox(label="Response", interactive=False),
|
75 |
+
title="Nexa Omni Vision",
|
76 |
+
description="""
|
77 |
+
Upload an image and ask questions about it. The model will analyze the image and provide detailed answers to your queries.
|
78 |
+
""",
|
79 |
+
examples=[
|
80 |
+
["example_images/example_1.jpg", "Describe this image", 128],
|
81 |
+
]
|
82 |
+
)
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|
example_images/example_1.jpg
ADDED