import gradio as gr from huggingface_hub import InferenceClient from optimum.intel import OVModelForCausalLM from transformers import AutoTokenizer, pipeline # 載入模型和標記器 model_id = "hsuwill000/Qwen2.5-3B-Instruct-openvino" model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) # 建立生成管道 #pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) def respond(prompt , history): # 將當前訊息與歷史訊息合併 #input_text = message if not history else history[-1]["content"] + " " + message #input_text = message+",(450字內回覆)" messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt } ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) # 獲取模型的回應 #response = pipe(input_text, max_length=512, truncation=True, num_return_sequences=1) #reply = response[0]['generated_text'] generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # 返回新的消息格式 print(f"Messages: {messages}") print(f"Reply: {response}") return response # 設定 Gradio 的聊天界面 demo = gr.ChatInterface(fn=respond, title="Qwen2.5-0.5B-Instruct-openvino-4bit", description="Qwen2.5-0.5B-Instruct-openvino-4bit", type='messages') if __name__ == "__main__": demo.launch()