|
import os |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM |
|
from optimum.intel.openvino import OVStableDiffusionPipeline |
|
|
|
import torch |
|
|
|
|
|
model_id = "Kouki79/Realistic_Vision6_LCM" |
|
export_path = "exported_model_openvino_int8" |
|
|
|
|
|
HIGH = 1024 |
|
WIDTH = 512 |
|
|
|
print("🔍 檢查 OpenVINO 模型是否已存在...") |
|
if not os.path.exists(export_path) or not os.listdir(export_path): |
|
print("⚠️ 尚未轉換 OpenVINO 8-bit 模型,開始轉換...") |
|
|
|
|
|
model = OVStableDiffusionPipeline.from_pretrained( |
|
model_id, |
|
export=True, |
|
device="CPU", |
|
precision="int8", |
|
) |
|
|
|
|
|
model.save_pretrained(export_path) |
|
print(f"✅ 轉換完成!OpenVINO 8-bit 模型已儲存至 '{export_path}'") |
|
else: |
|
print(f"✅ 發現已轉換的 OpenVINO 8-bit 模型:'{export_path}'") |
|
|
|
|
|
print("🔄 載入 OpenVINO 8-bit 模型...") |
|
pipe = OVStableDiffusionPipeline.from_pretrained( |
|
export_path, |
|
compile=True, |
|
device="CPU", |
|
safety_checker=None, |
|
torch_dtype=torch.uint8 |
|
) |
|
print("✅ OpenVINO 模型載入完成!") |
|
|
|
|
|
def infer(prompt): |
|
print(f"🖼️ 生成圖片: {prompt}") |
|
image = pipe( |
|
prompt=f",hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic,", |
|
negative_prompt="EasyNegative, cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly,", |
|
width=WIDTH, |
|
height=HIGH, |
|
guidance_scale=1.0, |
|
num_inference_steps=6, |
|
num_images_per_prompt=1, |
|
).images[0] |
|
|
|
return image |
|
|
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f""" |
|
# {model_id.split('/')[1]} {WIDTH}x{HIGH} |
|
Running on OpenVINO (8-bit). |
|
""") |
|
|
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Generate", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
run_button.click( |
|
fn=infer, |
|
inputs=[prompt], |
|
outputs=[result] |
|
) |
|
|
|
print("🚀 啟動 Gradio Web UI...") |
|
demo.queue().launch() |
|
|