File size: 1,950 Bytes
93b0d61
fb01559
93b0d61
6904e5b
f52c50f
e1e9b2f
99658c9
b4aea0f
93b0d61
 
 
c8fdbc2
 
db3f2ce
93b0d61
 
 
3587027
4265f46
93b0d61
 
c082d19
c8fdbc2
93b0d61
 
 
 
 
 
14b405b
93b0d61
 
 
 
14b405b
93b0d61
 
 
8267623
 
93b0d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8fdbc2
93b0d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
from optimum.intel.openvino.modeling_diffusion import OVPipelineForText2Image
import torch

model_id = "AIFunOver/stable-diffusion-3.5-large-turbo-openvino-8bit"

HIGH=1024
WIDTH=512

batch_size = -1



pipe = OVPipelineForText2Image.from_pretrained(
        model_id, 
        compile = False, 
        ov_config = {"CACHE_DIR":""},
        torch_dtype=torch.uint8, 
        safety_checker=None,
        use_safetensors=False,
        )
print(pipe.scheduler.compatibles)


pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1)

pipe.compile()

prompt=""
negative_prompt=f"EasyNegative, cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly,"

def infer(prompt,negative_prompt):

    image = pipe(
        prompt = f",hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic, ", 
        negative_prompt = negative_prompt,
        width = WIDTH, 
        height = HIGH,
        guidance_scale=1.0,
        num_inference_steps=6,
        num_images_per_prompt=1,
    ).images[0] 
    
    return image


css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""


power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # {model_id.split('/')[1]} {WIDTH}x{HIGH}
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )         
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()