htafer commited on
Commit
76c1eb0
1 Parent(s): 6110038

use qdrant instead

Browse files
Files changed (1) hide show
  1. app.py +17 -7
app.py CHANGED
@@ -6,6 +6,8 @@ from langchain.document_loaders import TextLoader
6
  from langchain.text_splitter import CharacterTextSplitter
7
  from langchain.embeddings import OpenAIEmbeddings
8
  from langchain.vectorstores import FAISS
 
 
9
  from langchain.memory import ConversationBufferMemory
10
  from langchain.document_loaders import TextLoader
11
  from tempfile import NamedTemporaryFile
@@ -15,11 +17,13 @@ def main():
15
  # Initialize the Streamlit app
16
  st.title('Document-Based Q&A System')
17
 
18
- # API Key input securely
19
- api_key = st.text_input("Enter your OpenAI API key:", type="password")
20
- if api_key:
21
- os.environ["OPENAI_API_KEY"] = api_key
22
- st.success("API Key has been set!")
 
 
23
 
24
  # File uploader
25
  uploaded_file = st.file_uploader("Upload your document", type=['txt'])
@@ -35,9 +39,15 @@ def main():
35
  data = text_splitter.split_documents(data)
36
 
37
  # Create vector store
 
38
  embeddings = OpenAIEmbeddings()
39
- vectorstore = FAISS.from_documents(data, embedding=embeddings)
40
-
 
 
 
 
 
41
  # Create conversation chain
42
  llm = ChatOpenAI(temperature=0.3, model_name="gpt-4-turbo")
43
  memory = ConversationBufferMemory(
 
6
  from langchain.text_splitter import CharacterTextSplitter
7
  from langchain.embeddings import OpenAIEmbeddings
8
  from langchain.vectorstores import FAISS
9
+ from langchain_community.vectorstores import Qdrant
10
+
11
  from langchain.memory import ConversationBufferMemory
12
  from langchain.document_loaders import TextLoader
13
  from tempfile import NamedTemporaryFile
 
17
  # Initialize the Streamlit app
18
  st.title('Document-Based Q&A System')
19
 
20
+ # API Key input securely, API KEY defined in settings
21
+ # api_key = st.text_input("Enter your OpenAI API key:", type="password")
22
+ # if api_key:
23
+ # os.environ["OPENAI_API_KEY"] = api_key
24
+ # st.success("API Key has been set!")
25
+
26
+
27
 
28
  # File uploader
29
  uploaded_file = st.file_uploader("Upload your document", type=['txt'])
 
39
  data = text_splitter.split_documents(data)
40
 
41
  # Create vector store
42
+
43
  embeddings = OpenAIEmbeddings()
44
+ #vectorstore = FAISS.from_documents(data, embedding=embeddings)
45
+ vectorstore = Qdrant.from_documents(
46
+ data,
47
+ embeddings,
48
+ location=":memory:", # Local mode with in-memory storage only
49
+ collection_name="my_documents",
50
+ )
51
  # Create conversation chain
52
  llm = ChatOpenAI(temperature=0.3, model_name="gpt-4-turbo")
53
  memory = ConversationBufferMemory(