import argparse import json import os import re import tempfile import logging logging.getLogger('numba').setLevel(logging.WARNING) import librosa import numpy as np import torch from torch import no_grad, LongTensor import commons import utils import gradio as gr import ONNXVITS_infer import models from text import text_to_sequence, _clean_text from text.symbols import symbols from mel_processing import spectrogram_torch import psutil from datetime import datetime language_marks = { "Japanese": "", "日本語": "[JA]", "简体中文": "[ZH]", "English": "[EN]", "Mix": "", } limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces def create_tts_fn(model, hps, speaker_ids): def tts_fn(text, speaker, language, speed, is_symbol): if limitation: text_len = len(re.sub("\[([A-Z]{2})\]", "", text)) max_len = 500 #文本长度限制 if is_symbol: max_len *= 3 if text_len > max_len: return "错误:文本太长", None if language is not None: text = language_marks[language] + text + language_marks[language] speaker_id = speaker_ids[speaker] stn_tst = get_text(text, hps, is_symbol) with no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = LongTensor([stn_tst.size(0)]) sid = LongTensor([speaker_id]) audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() del stn_tst, x_tst, x_tst_lengths, sid return "成功", (hps.data.sampling_rate, audio) return tts_fn def create_vc_fn(model, hps, speaker_ids): def vc_fn(original_speaker, target_speaker, input_audio): if input_audio is None: return "您需要上传音频", None sampling_rate, audio = input_audio duration = audio.shape[0] / sampling_rate if limitation and duration > 30: #限制音频长度 return "错误:音频太长", None original_speaker_id = speaker_ids[original_speaker] target_speaker_id = speaker_ids[target_speaker] audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != hps.data.sampling_rate: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate) with no_grad(): y = torch.FloatTensor(audio) y = y.unsqueeze(0) spec = spectrogram_torch(y, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, center=False) spec_lengths = LongTensor([spec.size(-1)]) sid_src = LongTensor([original_speaker_id]) sid_tgt = LongTensor([target_speaker_id]) audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][ 0, 0].data.cpu().float().numpy() del y, spec, spec_lengths, sid_src, sid_tgt return "成功", (hps.data.sampling_rate, audio) return vc_fn def get_text(text, hps, is_symbol): text = text.replace('\n', '[BR]') text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = LongTensor(text_norm) return text_norm def create_to_symbol_fn(hps): def to_symbol_fn(is_symbol_input, input_text, temp_text): return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \ else (temp_text, temp_text) return to_symbol_fn models_tts = [] models_vc = [] models_info = [ { "title": "三种语言", "languages": ['日本語', '简体中文', 'English', 'Mix'], "description": """ 这个模型在赛马娘,原神,魔女的夜宴以及VCTK数据集上混合训练以学习多种语言。 所有角色均可说中日英三语。\n\n 若需要在同一个句子中混合多种语言,使用相应的语言标记包裹句子。 (日语用[JA], 中文用[ZH], 英文用[EN]),参考Examples中的示例。 """, "model_path": "./pretrained_models/G_trilingual.pth", "config_path": "./configs/uma_trilingual.json", "examples": [['你好,训练员先生,很高兴见到你。', '草上飞 Grass Wonder (Umamusume Pretty Derby)', '简体中文', 1, False], ['To be honest, I have no idea what to say as examples.', '派蒙 Paimon (Genshin Impact)', 'English', 1, False], ['授業中に出しだら,学校生活終わるですわ。', '綾地 寧々 Ayachi Nene (Sanoba Witch)', '日本語', 1, False], ['[JA]こんにちわ。[JA][ZH]你好![ZH][EN]Hello![EN]', '綾地 寧々 Ayachi Nene (Sanoba Witch)', 'Mix', 1, False]], "onnx_dir": "./ONNX_net/G_trilingual/" }, { "title": "日语", "languages": ["Japanese"], "description": """ 这个模型包含赛马娘的所有87名角色,只能合成日语。 """, "model_path": "./pretrained_models/G_jp.pth", "config_path": "./configs/uma87.json", "examples": [['お疲れ様です,トレーナーさん。', '无声铃鹿 Silence Suzuka (Umamusume Pretty Derby)', 'Japanese', 1, False], ['張り切っていこう!', '北部玄驹 Kitasan Black (Umamusume Pretty Derby)', 'Japanese', 1, False], ['何でこんなに慣れでんのよ,私のほが先に好きだっだのに。', '草上飞 Grass Wonder (Umamusume Pretty Derby)', 'Japanese', 1, False], ['授業中に出しだら,学校生活終わるですわ。', '目白麦昆 Mejiro Mcqueen (Umamusume Pretty Derby)', 'Japanese', 1, False], ['お帰りなさい,お兄様!', '米浴 Rice Shower (Umamusume Pretty Derby)', 'Japanese', 1, False], ['私の処女をもらっでください!', '米浴 Rice Shower (Umamusume Pretty Derby)', 'Japanese', 1, False]], "onnx_dir": "./ONNX_net/G_jp/" }, ] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--share", action="store_true", default=False, help="share gradio app") args = parser.parse_args() for info in models_info: name = info['title'] lang = info['languages'] examples = info['examples'] config_path = info['config_path'] model_path = info['model_path'] description = info['description'] onnx_dir = info["onnx_dir"] hps = utils.get_hparams_from_file(config_path) model = ONNXVITS_infer.SynthesizerTrn( len(hps.symbols), hps.data.filter_length // 2 + 1, hps.data.sampling_rate // hps.data.hop_length, n_speakers=hps.data.n_speakers, ONNX_dir=onnx_dir, **hps.model) utils.load_checkpoint(model_path, model, None) model.eval() speaker_ids = hps.speakers speakers = list(hps.speakers.keys()) models_tts.append((name, description, speakers, lang, examples, hps.symbols, create_tts_fn(model, hps, speaker_ids), create_to_symbol_fn(hps))) models_vc.append((name, description, speakers, create_vc_fn(model, hps, speaker_ids))) app = gr.Blocks() with app: gr.Markdown("# 中文 & 英文 & 日语 动漫 TTS\n\n" "## 此项目原作者一直没更新,我已更新到最新版的gradio,并修复已知问题,速度超快的好吧。\n\n包含一个纯日语TTS和一个中日英三语TTS模型,主要为二次元角色。" ) with gr.Tabs() as tabs: with gr.Tab("TTS"): with gr.Tabs() as model_tabs: for i, (name, description, speakers, lang, example, symbols, tts_fn, to_symbol_fn) in enumerate(models_tts): with gr.Tab(name): gr.Markdown(description) with gr.Row(): with gr.Column(): textbox = gr.Textbox( label="Text", placeholder="在此处输入您的句子(最多 500 个单词)", value="こんにちわ。", elem_id=f"tts-input", lines=3 ) with gr.Accordion(label="Phoneme Input", open=False): temp_text_var = gr.State() symbol_input = gr.Checkbox(value=False, label="Symbol input") symbol_list = gr.Dataframe( headers=["Symbols"], value=[[x] for x in symbols], elem_id=f"symbol-list", interactive=False ) symbol_list_json = gr.JSON(value=symbols, visible=False) symbol_input.change( fn=to_symbol_fn, inputs=[symbol_input, textbox, temp_text_var], outputs=[textbox, temp_text_var] ) def update_text(evt): if evt is None: # 处理空事件 return "" return evt # 直接返回事件值 symbol_list.select( fn=update_text, outputs=textbox ) gr.HTML(value="", elem_id="symbol-list-js") gr.HTML(""" """) char_dropdown = gr.Dropdown( choices=speakers, value=speakers[0], label='character' ) language_dropdown = gr.Dropdown( choices=lang, value=lang[0], label='language' ) duration_slider = gr.Slider( minimum=0.1, maximum=5, value=1, step=0.1, label='速度 Speed' ) with gr.Column(): text_output = gr.Textbox(label="Message") audio_output = gr.Audio( label="Output Audio", elem_id="tts-audio", type="numpy" ) btn = gr.Button("生成!") btn.click( fn=tts_fn, inputs=[ textbox, char_dropdown, language_dropdown, duration_slider, symbol_input ], outputs=[text_output, audio_output] ) gr.Examples( examples=example, inputs=[ textbox, char_dropdown, language_dropdown, duration_slider, symbol_input ], outputs=[text_output, audio_output], fn=tts_fn ) app.queue(max_size=3).launch(show_api=True, share=args.share)