import numpy as np import torch import torch.nn.functional as F from torch import nn from torch.nn import Linear, Conv2d, BatchNorm2d, PReLU, Sequential, Module from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE from models.stylegan2.model import EqualLinear class GradualStyleBlock(Module): def __init__(self, in_c, out_c, spatial): super(GradualStyleBlock, self).__init__() self.out_c = out_c self.spatial = spatial num_pools = int(np.log2(spatial)) modules = [] modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1), nn.LeakyReLU()] for i in range(num_pools - 1): modules += [ Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1), nn.LeakyReLU() ] self.convs = nn.Sequential(*modules) self.linear = EqualLinear(out_c, out_c, lr_mul=1) def forward(self, x): x = self.convs(x) x = x.view(-1, self.out_c) x = self.linear(x) return x class GradualStyleEncoder(Module): def __init__(self, num_layers, mode='ir', opts=None): super(GradualStyleEncoder, self).__init__() assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' blocks = get_blocks(num_layers) if mode == 'ir': unit_module = bottleneck_IR elif mode == 'ir_se': unit_module = bottleneck_IR_SE self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64)) modules = [] for block in blocks: for bottleneck in block: modules.append(unit_module(bottleneck.in_channel, bottleneck.depth, bottleneck.stride)) self.body = Sequential(*modules) self.styles = nn.ModuleList() self.style_count = 18 self.coarse_ind = 3 self.middle_ind = 7 for i in range(self.style_count): if i < self.coarse_ind: style = GradualStyleBlock(512, 512, 16) elif i < self.middle_ind: style = GradualStyleBlock(512, 512, 32) else: style = GradualStyleBlock(512, 512, 64) self.styles.append(style) self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0) self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0) def _upsample_add(self, x, y): '''Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.upsample(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _, _, H, W = y.size() return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y def forward(self, x): x = self.input_layer(x) latents = [] modulelist = list(self.body._modules.values()) for i, l in enumerate(modulelist): x = l(x) if i == 6: c1 = x elif i == 20: c2 = x elif i == 23: c3 = x for j in range(self.coarse_ind): latents.append(self.styles[j](c3)) p2 = self._upsample_add(c3, self.latlayer1(c2)) for j in range(self.coarse_ind, self.middle_ind): latents.append(self.styles[j](p2)) p1 = self._upsample_add(p2, self.latlayer2(c1)) for j in range(self.middle_ind, self.style_count): latents.append(self.styles[j](p1)) out = torch.stack(latents, dim=1) return out class BackboneEncoderUsingLastLayerIntoW(Module): def __init__(self, num_layers, mode='ir', opts=None): super(BackboneEncoderUsingLastLayerIntoW, self).__init__() print('Using BackboneEncoderUsingLastLayerIntoW') assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' blocks = get_blocks(num_layers) if mode == 'ir': unit_module = bottleneck_IR elif mode == 'ir_se': unit_module = bottleneck_IR_SE self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64)) self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1)) self.linear = EqualLinear(512, 512, lr_mul=1) modules = [] for block in blocks: for bottleneck in block: modules.append(unit_module(bottleneck.in_channel, bottleneck.depth, bottleneck.stride)) self.body = Sequential(*modules) def forward(self, x): x = self.input_layer(x) x = self.body(x) x = self.output_pool(x) x = x.view(-1, 512) x = self.linear(x) return x class BackboneEncoderUsingLastLayerIntoWPlus(Module): def __init__(self, num_layers, mode='ir', opts=None): super(BackboneEncoderUsingLastLayerIntoWPlus, self).__init__() print('Using BackboneEncoderUsingLastLayerIntoWPlus') assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' blocks = get_blocks(num_layers) if mode == 'ir': unit_module = bottleneck_IR elif mode == 'ir_se': unit_module = bottleneck_IR_SE self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64)) self.output_layer_2 = Sequential(BatchNorm2d(512), torch.nn.AdaptiveAvgPool2d((7, 7)), Flatten(), Linear(512 * 7 * 7, 512)) self.linear = EqualLinear(512, 512 * 18, lr_mul=1) modules = [] for block in blocks: for bottleneck in block: modules.append(unit_module(bottleneck.in_channel, bottleneck.depth, bottleneck.stride)) self.body = Sequential(*modules) def forward(self, x): x = self.input_layer(x) x = self.body(x) x = self.output_layer_2(x) x = self.linear(x) x = x.view(-1, 18, 512) return x