Spaces:
Runtime error
Runtime error
File size: 9,001 Bytes
0d24b07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import random
from datetime import datetime
import gradio as gr
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid
class AnimateController:
def __init__(
self,
config_path="./configs/prompts/animation.yaml",
weight_dtype=torch.float16,
):
# Read pretrained weights path from config
self.config = OmegaConf.load(config_path)
self.pipeline = None
self.weight_dtype = weight_dtype
def animate(
self,
ref_image,
pose_video_path,
width=512,
height=768,
length=24,
num_inference_steps=25,
cfg=3.5,
seed=123,
):
generator = torch.manual_seed(seed)
if isinstance(ref_image, np.ndarray):
ref_image = Image.fromarray(ref_image)
if self.pipeline is None:
vae = AutoencoderKL.from_pretrained(
self.config.pretrained_vae_path,
).to("cuda", dtype=self.weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
self.config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=self.weight_dtype, device="cuda")
inference_config_path = self.config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
self.config.pretrained_base_model_path,
self.config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=self.weight_dtype, device="cuda")
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
dtype=self.weight_dtype, device="cuda"
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
self.config.image_encoder_path
).to(dtype=self.weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(self.config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(self.config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(self.config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=self.weight_dtype)
self.pipeline = pipe
pose_images = read_frames(pose_video_path)
src_fps = get_fps(pose_video_path)
pose_list = []
pose_tensor_list = []
pose_transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
for pose_image_pil in pose_images[:length]:
pose_list.append(pose_image_pil)
pose_tensor_list.append(pose_transform(pose_image_pil))
video = self.pipeline(
ref_image,
pose_list,
width=width,
height=height,
video_length=length,
num_inference_steps=num_inference_steps,
guidance_scale=cfg,
generator=generator,
).videos
ref_image_tensor = pose_transform(ref_image) # (c, h, w)
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
ref_image_tensor = repeat(
ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=length
)
pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
pose_tensor = pose_tensor.transpose(0, 1)
pose_tensor = pose_tensor.unsqueeze(0)
video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0)
save_dir = f"./output/gradio"
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
out_path = os.path.join(save_dir, f"{date_str}T{time_str}.mp4")
save_videos_grid(
video,
out_path,
n_rows=3,
fps=src_fps,
)
torch.cuda.empty_cache()
return out_path
controller = AnimateController()
def ui():
with gr.Blocks() as demo:
gr.Markdown(
"""
# Moore-AnimateAnyone Demo
"""
)
animation = gr.Video(
format="mp4",
label="Animation Results",
height=448,
autoplay=True,
)
with gr.Row():
reference_image = gr.Image(label="Reference Image")
motion_sequence = gr.Video(
format="mp4", label="Motion Sequence", height=512
)
with gr.Column():
width_slider = gr.Slider(
label="Width", minimum=448, maximum=768, value=512, step=64
)
height_slider = gr.Slider(
label="Height", minimum=512, maximum=1024, value=768, step=64
)
length_slider = gr.Slider(
label="Video Length", minimum=24, maximum=128, value=24, step=24
)
with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=-1)
seed_button = gr.Button(
value="\U0001F3B2", elem_classes="toolbutton"
)
seed_button.click(
fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)),
inputs=[],
outputs=[seed_textbox],
)
with gr.Row():
sampling_steps = gr.Slider(
label="Sampling steps",
value=25,
info="default: 25",
step=5,
maximum=30,
minimum=10,
)
guidance_scale = gr.Slider(
label="Guidance scale",
value=3.5,
info="default: 3.5",
step=0.5,
maximum=10,
minimum=2.0,
)
submit = gr.Button("Animate")
def read_video(video):
return video
def read_image(image):
return Image.fromarray(image)
# when user uploads a new video
motion_sequence.upload(read_video, motion_sequence, motion_sequence)
# when `first_frame` is updated
reference_image.upload(read_image, reference_image, reference_image)
# when the `submit` button is clicked
submit.click(
controller.animate,
[
reference_image,
motion_sequence,
width_slider,
height_slider,
length_slider,
sampling_steps,
guidance_scale,
seed_textbox,
],
animation,
)
# Examples
gr.Markdown("## Examples")
gr.Examples(
examples=[
[
"./configs/inference/ref_images/anyone-5.png",
"./configs/inference/pose_videos/anyone-video-2_kps.mp4",
],
[
"./configs/inference/ref_images/anyone-10.png",
"./configs/inference/pose_videos/anyone-video-1_kps.mp4",
],
[
"./configs/inference/ref_images/anyone-2.png",
"./configs/inference/pose_videos/anyone-video-5_kps.mp4",
],
],
inputs=[reference_image, motion_sequence],
outputs=animation,
)
return demo
demo = ui()
demo.launch(share=True)
|