File size: 11,517 Bytes
dda6e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionPipeline
import torch
import cv2
import numpy as np
from transformers import pipeline
import gradio as gr
from PIL import Image
from diffusers.utils import load_image
import os, random, gc, re, json, time, shutil, glob
import PIL.Image
import tqdm
from controlnet_aux import OpenposeDetector
from accelerate import Accelerator
from huggingface_hub import HfApi, list_models, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem
HfApi=HfApi()
HF_TOKEN=os.getenv("HF_TOKEN")
HF_HUB_DISABLE_TELEMETRY=1
DO_NOT_TRACK=1
HF_HUB_ENABLE_HF_TRANSFER=0
accelerator = Accelerator(cpu=True)
InferenceClient=InferenceClient()

models =[]
loris=[]
apol=[]

def hgfdm(models):
    models=models
    poi=InferenceClient.list_deployed_models()
    voi=poi["text-to-image"]
    for met in voi:
        pio=""+met+""
        models.append(pio)
    return models

def smdls(models):
    models=models
    mtlst=HfApi.list_models(filter="diffusers:StableDiffusionPipeline",limit=500,full=True,)
    if mtlst:
        for nea in mtlst:
            vmh=""+str(nea.id)+""
            models.append(vmh)
    return models

def sldls(loris):
    loris=loris
    ltlst=HfApi.list_models(filter="stable-diffusion",search="lora",limit=500,full=True,)
    if ltlst:
        for noa in ltlst:
            lmh=""+str(noa.id)+""
            loris.append(lmh)
    return loris

def chdr(apol,prompt,modil,los,stips,fnamo,gaul):
    try:
        type="SD_controlnet"
        tre='./tmpo/'+fnamo+'.json'
        tra='./tmpo/'+fnamo+'_0.png'
        trm='./tmpo/'+fnamo+'_1.png'
        trv='./tmpo/'+fnamo+'_pose.png'
        trh='./tmpo/'+fnamo+'_canny.png'
        trg='./tmpo/'+fnamo+'_cann_im.png'
        trq='./tmpo/'+fnamo+'_tilage.png'
        flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"]
        flng=[itm[::-1] for itm in flng]
        ptn = r"\b" + r"\b|\b".join(flng) + r"\b"
        if re.search(ptn, prompt, re.IGNORECASE):
            print("onon buddy")
        else:
            dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type}
            with open(tre, 'w') as f:
                json.dump(dobj, f)
            HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
        dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,}
        with open(tre, 'w') as f:
            json.dump(dobj, f)
        HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
        try:
            for pgn in glob.glob('./tmpo/*.png'):
                os.remove(pgn)
            for jgn in glob.glob('./tmpo/*.json'):
                os.remove(jgn)
            del tre
            del tra
            del trm
            del trv
            del trh
            del trg
            del trq
        except:
            print("cant")
    except:
        print("failed to umake obj")

def crll(dnk):
    lix=""
    lotr=HfApi.list_files_info(repo_id=""+dnk+"",repo_type="model")
    for flre in list(lotr):
        fllr=[]
        gar=re.match(r'.+(\.pt|\.ckpt|\.bin|\.safetensors)$', flre.path)
        yir=re.search(r'[^/]+$', flre.path)
        if gar:
            fllr.append(""+str(yir.group(0))+"")
            lix=""+fllr[-1]+""
        else:
            lix=""
    return lix

def plax(gaul,req: gr.Request):
    gaul=str(req.headers)
    return gaul

def plex(prompt,mput,neg_prompt,modil,stips,scaly,csal,csbl,nut,wei,hei,los,loca,gaul,progress=gr.Progress(track_tqdm=True)):
    gc.collect()
    adi=""
    ldi=""
    
    openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
    controlnet = [
    ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float32),
    ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32),
    ]
    try:
        crda=ModelCard.load(""+modil+"")
        card=ModelCard.load(""+modil+"").data.to_dict().get("instance_prompt")
        cerd=ModelCard.load(""+modil+"").data.to_dict().get("custom_prompt")
        cird=ModelCard.load(""+modil+"").data.to_dict().get("lora_prompt")
        mtch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', crda.text, re.IGNORECASE)
        moch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', crda.text, re.IGNORECASE)
        if moch:
            adi+=""+str(moch.group(1))+", "
        else:
            print("no floff trigger")
        if mtch:
            adi+=""+str(mtch.group(1))+", "
        else:
            print("no fluff trigger")
        if card:
            adi+=""+str(card)+", "
        else:
            print("no instance")
        if cerd:
            adi+=""+str(cerd)+", "
        else:
            print("no custom")
        if cird:
            adi+=""+str(cird)+", "
        else:
            print("no lora")
    except:
        print("no card")
    try:
        pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(""+modil+"", use_safetensors=False,torch_dtype=torch.float32, safety_checker=None))
        pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(""+modil+"", use_safetensors=False,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None))
    except:
        gc.collect()
        pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(""+modil+"", use_safetensors=True,torch_dtype=torch.float32, safety_checker=None))
        pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(""+modil+"", use_safetensors=True,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None))
    if los:
        try:
            lrda=ModelCard.load(""+los+"")
            lard=ModelCard.load(""+los+"").data.to_dict().get("instance_prompt")
            lerd=ModelCard.load(""+los+"").data.to_dict().get("custom_prompt")
            lird=ModelCard.load(""+los+"").data.to_dict().get("stable-diffusion")
            ltch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', lrda.text, re.IGNORECASE)
            loch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', lrda.text, re.IGNORECASE)
            if loch and lird:
                ldi+=""+str(loch.group(1))+", "
            else:
                print("no lloff trigger")
            if ltch and lird:
                ldi+=""+str(ltch.group(1))+", "
            else:
                print("no lluff trigger")
            if lard and lird:
                ldi+=""+str(lard)+", "
            else:
                print("no instance")
                ldi+=""
            if lerd and lird:
                ldi+=""+str(lerd)+", "
            else:
                print("no custom")
                ldi+=""
        except:
            print("no trigger")
        try:
            pope.load_lora_weights(""+los+"", weight_name=""+str(crll(los))+"",)
            pope.fuse_lora(fuse_unet=True,fuse_text_encoder=False)
        except:
            print("no can do")
    else:
        los=""
        pope.unet.to(memory_format=torch.channels_last)
        pope = accelerator.prepare(pope.to("cpu"))
        pipe.unet.to(memory_format=torch.channels_last)
        pipe = accelerator.prepare(pipe.to("cpu"))
    gc.collect()
    apol=[]
    height=hei
    width=wei
    prompt=""+str(adi)+""+str(ldi)+""+prompt+""
    negative_prompt=""+neg_prompt+""
    lora_scale=loca
    if nut == 0:
        nm = random.randint(1, 2147483616)
        while nm % 32 != 0:
            nm = random.randint(1, 2147483616)
    else:
        nm=nut
    generator = torch.Generator(device="cpu").manual_seed(nm)
    tilage = pope(prompt,num_inference_steps=5,height=height,width=width,generator=generator,cross_attention_kwargs={"scale": lora_scale}).images[0]
    cannyimage = np.array(tilage)
    low_threshold = 100
    high_threshold = 200
    fnamo=""+str(int(time.time()))+""
    cannyimage = cv2.Canny(cannyimage, low_threshold, high_threshold)
    cammyimage=Image.fromarray(cannyimage).save('./tmpo/'+fnamo+'_canny.png', 'PNG')
    zero_start = cannyimage.shape[1] // 4
    zero_end = zero_start + cannyimage.shape[1] // 2
    cannyimage[:, zero_start:zero_end] = 0
    cannyimage = cannyimage[:, :, None]
    cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
    canny_image = Image.fromarray(cannyimage)
    pose_image = load_image(mput).resize((512, 512))
    openpose_image = openpose(pose_image)
    images = [openpose_image, canny_image]
    omage=pipe([prompt]*2,images,num_inference_steps=stips,generator=generator,negative_prompt=[neg_prompt]*2,controlnet_conditioning_scale=[csal, csbl])
    for i, imge in enumerate(omage["images"]):
        apol.append(imge)
        imge.save('./tmpo/'+fnamo+'_'+str(i)+'.png', 'PNG')
    apol.append(openpose_image)
    apol.append(cammyimage)
    apol.append(canny_image)
    apol.append(tilage)
    openpose_image.save('./tmpo/'+fnamo+'_pose.png', 'PNG')
    canny_image.save('./tmpo/'+fnamo+'_cann_im.png', 'PNG')
    tilage.save('./tmpo/'+fnamo+'_tilage.png', 'PNG')
    chdr(apol,prompt,modil,los,stips,fnamo,gaul)
    return apol

def aip(ill,api_name="/run"):
    return
def pit(ill,api_name="/predict"):
    return

with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface:
    out=gr.Gallery(label="Generated Output Image", columns=1)
    inut=gr.Textbox(label="Prompt")
    mput=gr.Image(type="filepath")
    gaul=gr.Textbox(visible=False)
    inot=gr.Dropdown(choices=smdls(models),value=random.choice(models), type="value")
    btn=gr.Button("GENERATE")
    with gr.Accordion("Advanced Settings", open=False):
        inlt=gr.Dropdown(choices=sldls(loris),value=None, type="value")
        inet=gr.Textbox(label="Negative_prompt", value="low quality, bad quality,")
        inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=30,value=20)
        inat=gr.Slider(label="Guidance_scale",minimum=1,step=1,maximum=20,value=7)
        csal=gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.1, step=0.1, maximum=1)
        csbl=gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.1, step=0.1, maximum=1)
        loca=gr.Slider(label="Lora scale",minimum=0.1,step=0.1,maximum=0.9,value=0.5)
        indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0)
        inwt=gr.Slider(label="Width",minimum=512,step=32,maximum=1024,value=512)
        inht=gr.Slider(label="Height",minimum=512,step=32,maximum=1024,value=512)
    
    btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,mput,inet,inot,inyt,inat,csal,csbl,indt,inwt,inht,inlt,loca,gaul])

iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=20,inline=False,show_api=False)