File size: 8,990 Bytes
96c927a
 
 
 
 
 
 
b3e0cbc
96c927a
b3e0cbc
96c927a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3e0cbc
 
96c927a
b3e0cbc
 
 
96c927a
b3e0cbc
 
 
 
96c927a
 
 
b3e0cbc
 
 
 
 
 
 
 
 
96c927a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bdc2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c927a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3e0cbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6132304
b3e0cbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6132304
b3e0cbc
 
 
96c927a
 
 
795c159
96c927a
 
 
b3e0cbc
 
 
 
 
 
 
 
 
 
96c927a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import io
import base64
import os
from random import sample
from sched import scheduler

import uvicorn
from fastapi import FastAPI, Response, BackgroundTasks, HTTPException, UploadFile, File, status
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware

import httpx
from urllib.parse import urljoin


import numpy as np
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline
from PIL import Image
from PIL import ImageOps
import gradio as gr
import base64
import skimage
import skimage.measure
from utils import *
import boto3
import magic

AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID')
AWS_SECRET_KEY = os.getenv('AWS_SECRET_KEY')
AWS_S3_BUCKET_NAME = os.getenv('AWS_S3_BUCKET_NAME')

FILE_TYPES = {
    'image/png': 'png',
    'image/jpeg': 'jpg',
}

WHITES = 66846720
MASK = Image.open("mask.png")

app = FastAPI()

auth_token = os.environ.get("API_TOKEN") or True


s3 = boto3.client(service_name='s3',
                  aws_access_key_id=AWS_ACCESS_KEY_ID,
                  aws_secret_access_key=AWS_SECRET_KEY)
try:
    SAMPLING_MODE = Image.Resampling.LANCZOS
except Exception as e:
    SAMPLING_MODE = Image.LANCZOS


blocks = gr.Blocks().queue()
model = {}


def get_model():
    if "text2img" not in model:
        text2img = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            revision="fp16",
            torch_dtype=torch.float16,
            use_auth_token=auth_token,
        ).to("cuda")
        inpaint = StableDiffusionInpaintPipeline(
            vae=text2img.vae,
            text_encoder=text2img.text_encoder,
            tokenizer=text2img.tokenizer,
            unet=text2img.unet,
            scheduler=text2img.scheduler,
            safety_checker=text2img.safety_checker,
            feature_extractor=text2img.feature_extractor,
        ).to("cuda")

        # lms = LMSDiscreteScheduler(
        #     beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        # img2img = StableDiffusionImg2ImgPipeline(
        #     vae=text2img.vae,
        #     text_encoder=text2img.text_encoder,
        #     tokenizer=text2img.tokenizer,
        #     unet=text2img.unet,
        #     scheduler=lms,
        #     safety_checker=text2img.safety_checker,
        #     feature_extractor=text2img.feature_extractor,
        # ).to("cuda")
        # try:
        #     total_memory = torch.cuda.get_device_properties(0).total_memory // (
        #         1024 ** 3
        #     )
        #     if total_memory <= 5:
        #         inpaint.enable_attention_slicing()
        # except:
        #     pass
        model["text2img"] = text2img
        model["inpaint"] = inpaint
        # model["img2img"] = img2img

    return model["text2img"], model["inpaint"]
    # model["img2img"]


get_model()


def run_outpaint(
    input_image,
    prompt_text,
    strength,
    guidance,
    step,
    fill_mode,
):
    text2img, inpaint = get_model()
    sel_buffer = np.array(input_image)
    img = sel_buffer[:, :, 0:3]
    mask = sel_buffer[:, :, -1]
    process_size = 512

    mask_sum = mask.sum()
    # if mask_sum >= WHITES:
    #     print("inpaiting with fixed Mask")
    #     mask = np.array(MASK)[:, :, 0]
    #     img, mask = functbl[fill_mode](img, mask)
    #     init_image = Image.fromarray(img)
    #     mask = 255 - mask
    #     mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
    #     mask = mask.repeat(8, axis=0).repeat(8, axis=1)
    #     mask_image = Image.fromarray(mask)

    #     # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
    #     with autocast("cuda"):
    #         images = inpaint(
    #             prompt=prompt_text,
    #             init_image=init_image.resize(
    #                 (process_size, process_size), resample=SAMPLING_MODE
    #             ),
    #             mask_image=mask_image.resize((process_size, process_size)),
    #             strength=strength,
    #             num_inference_steps=step,
    #             guidance_scale=guidance,
    #         )
    if mask_sum > 0:
        print("inpainting")
        img, mask = functbl[fill_mode](img, mask)
        init_image = Image.fromarray(img)
        mask = 255 - mask
        mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
        mask = mask.repeat(8, axis=0).repeat(8, axis=1)
        mask_image = Image.fromarray(mask)

        # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
        with autocast("cuda"):
            images = inpaint(
                prompt=prompt_text,
                init_image=init_image.resize(
                    (process_size, process_size), resample=SAMPLING_MODE
                ),
                mask_image=mask_image.resize((process_size, process_size)),
                strength=strength,
                num_inference_steps=step,
                guidance_scale=guidance,
            )
    else:
        print("text2image")
        with autocast("cuda"):
            images = text2img(
                prompt=prompt_text, height=process_size, width=process_size,
            )

    return images['sample'][0], images["nsfw_content_detected"][0]


with blocks as demo:

    with gr.Row():

        with gr.Column(scale=3, min_width=270):
            sd_prompt = gr.Textbox(
                label="Prompt", placeholder="input your prompt here", lines=4
            )
        with gr.Column(scale=2, min_width=150):
            sd_strength = gr.Slider(
                label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01
            )
        with gr.Column(scale=1, min_width=150):
            sd_step = gr.Number(label="Step", value=50, precision=0)
            sd_guidance = gr.Number(label="Guidance", value=7.5)
    with gr.Row():
        with gr.Column(scale=4, min_width=600):
            init_mode = gr.Radio(
                label="Init mode",
                choices=[
                    "patchmatch",
                    "edge_pad",
                    "cv2_ns",
                    "cv2_telea",
                    "gaussian",
                    "perlin",
                ],
                value="patchmatch",
                type="value",
            )

    model_input = gr.Image(label="Input", type="pil", image_mode="RGBA")
    proceed_button = gr.Button("Proceed", elem_id="proceed")
    model_output = gr.Image(label="Output")
    is_nsfw = gr.JSON()

    proceed_button.click(
        fn=run_outpaint,
        inputs=[
            model_input,
            sd_prompt,
            sd_strength,
            sd_guidance,
            sd_step,
            init_mode,
        ],
        outputs=[model_output, is_nsfw],
    )


blocks.config['dev_mode'] = False

# S3_HOST = "https://s3.amazonaws.com"


# @app.get("/uploads/{path:path}")
# async def uploads(path: str, response: Response):
#     async with httpx.AsyncClient() as client:
#         proxy = await client.get(f"{S3_HOST}/{path}")
#     response.body = proxy.content
#     response.status_code = proxy.status_code
#     response.headers['Access-Control-Allow-Origin'] = '*'
#     response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, OPTIONS'
#     response.headers['Access-Control-Allow-Headers'] = 'Authorization, Content-Type'
#     response.headers['Cache-Control'] = 'max-age=31536000'
#     return response

@app.post('/uploadfile/')
async def create_upload_file(background_tasks: BackgroundTasks, file: UploadFile):
    contents = await file.read()
    file_size = len(contents)
    if not 0 < file_size < 2E+06:
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail='Supported file size is less than 2 MB'
        )
    file_type = magic.from_buffer(contents, mime=True)
    if file_type.lower() not in FILE_TYPES:
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=f'Unsupported file type {file_type}. Supported types are {FILE_TYPES}'
        )
    temp_file = io.BytesIO()
    temp_file.write(contents)
    temp_file.seek(0)
    s3.upload_fileobj(Fileobj=temp_file, Bucket=AWS_S3_BUCKET_NAME, Key="uploads/" +
                      file.filename, ExtraArgs={"ContentType": file.content_type, "CacheControl": "max-age=31536000"})
    temp_file.close()

    return {"url": f'https://d26smi9133w0oo.cloudfront.net/uploads/{file.filename}', "filename": file.filename}


app = gr.mount_gradio_app(app, blocks, "/gradio",
                          gradio_api_url="http://0.0.0.0:7860/gradio/")

app.mount("/", StaticFiles(directory="../static", html=True), name="static")

origins = ["*"]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860,
                log_level="debug", reload=False)