Spaces:
Runtime error
Runtime error
File size: 8,990 Bytes
96c927a b3e0cbc 96c927a b3e0cbc 96c927a b3e0cbc 96c927a b3e0cbc 96c927a b3e0cbc 96c927a b3e0cbc 96c927a 5bdc2c3 96c927a b3e0cbc 6132304 b3e0cbc 6132304 b3e0cbc 96c927a 795c159 96c927a b3e0cbc 96c927a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import io
import base64
import os
from random import sample
from sched import scheduler
import uvicorn
from fastapi import FastAPI, Response, BackgroundTasks, HTTPException, UploadFile, File, status
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
import httpx
from urllib.parse import urljoin
import numpy as np
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline
from PIL import Image
from PIL import ImageOps
import gradio as gr
import base64
import skimage
import skimage.measure
from utils import *
import boto3
import magic
AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID')
AWS_SECRET_KEY = os.getenv('AWS_SECRET_KEY')
AWS_S3_BUCKET_NAME = os.getenv('AWS_S3_BUCKET_NAME')
FILE_TYPES = {
'image/png': 'png',
'image/jpeg': 'jpg',
}
WHITES = 66846720
MASK = Image.open("mask.png")
app = FastAPI()
auth_token = os.environ.get("API_TOKEN") or True
s3 = boto3.client(service_name='s3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_KEY)
try:
SAMPLING_MODE = Image.Resampling.LANCZOS
except Exception as e:
SAMPLING_MODE = Image.LANCZOS
blocks = gr.Blocks().queue()
model = {}
def get_model():
if "text2img" not in model:
text2img = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=auth_token,
).to("cuda")
inpaint = StableDiffusionInpaintPipeline(
vae=text2img.vae,
text_encoder=text2img.text_encoder,
tokenizer=text2img.tokenizer,
unet=text2img.unet,
scheduler=text2img.scheduler,
safety_checker=text2img.safety_checker,
feature_extractor=text2img.feature_extractor,
).to("cuda")
# lms = LMSDiscreteScheduler(
# beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
# img2img = StableDiffusionImg2ImgPipeline(
# vae=text2img.vae,
# text_encoder=text2img.text_encoder,
# tokenizer=text2img.tokenizer,
# unet=text2img.unet,
# scheduler=lms,
# safety_checker=text2img.safety_checker,
# feature_extractor=text2img.feature_extractor,
# ).to("cuda")
# try:
# total_memory = torch.cuda.get_device_properties(0).total_memory // (
# 1024 ** 3
# )
# if total_memory <= 5:
# inpaint.enable_attention_slicing()
# except:
# pass
model["text2img"] = text2img
model["inpaint"] = inpaint
# model["img2img"] = img2img
return model["text2img"], model["inpaint"]
# model["img2img"]
get_model()
def run_outpaint(
input_image,
prompt_text,
strength,
guidance,
step,
fill_mode,
):
text2img, inpaint = get_model()
sel_buffer = np.array(input_image)
img = sel_buffer[:, :, 0:3]
mask = sel_buffer[:, :, -1]
process_size = 512
mask_sum = mask.sum()
# if mask_sum >= WHITES:
# print("inpaiting with fixed Mask")
# mask = np.array(MASK)[:, :, 0]
# img, mask = functbl[fill_mode](img, mask)
# init_image = Image.fromarray(img)
# mask = 255 - mask
# mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
# mask = mask.repeat(8, axis=0).repeat(8, axis=1)
# mask_image = Image.fromarray(mask)
# # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
# with autocast("cuda"):
# images = inpaint(
# prompt=prompt_text,
# init_image=init_image.resize(
# (process_size, process_size), resample=SAMPLING_MODE
# ),
# mask_image=mask_image.resize((process_size, process_size)),
# strength=strength,
# num_inference_steps=step,
# guidance_scale=guidance,
# )
if mask_sum > 0:
print("inpainting")
img, mask = functbl[fill_mode](img, mask)
init_image = Image.fromarray(img)
mask = 255 - mask
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
mask_image = Image.fromarray(mask)
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
with autocast("cuda"):
images = inpaint(
prompt=prompt_text,
init_image=init_image.resize(
(process_size, process_size), resample=SAMPLING_MODE
),
mask_image=mask_image.resize((process_size, process_size)),
strength=strength,
num_inference_steps=step,
guidance_scale=guidance,
)
else:
print("text2image")
with autocast("cuda"):
images = text2img(
prompt=prompt_text, height=process_size, width=process_size,
)
return images['sample'][0], images["nsfw_content_detected"][0]
with blocks as demo:
with gr.Row():
with gr.Column(scale=3, min_width=270):
sd_prompt = gr.Textbox(
label="Prompt", placeholder="input your prompt here", lines=4
)
with gr.Column(scale=2, min_width=150):
sd_strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01
)
with gr.Column(scale=1, min_width=150):
sd_step = gr.Number(label="Step", value=50, precision=0)
sd_guidance = gr.Number(label="Guidance", value=7.5)
with gr.Row():
with gr.Column(scale=4, min_width=600):
init_mode = gr.Radio(
label="Init mode",
choices=[
"patchmatch",
"edge_pad",
"cv2_ns",
"cv2_telea",
"gaussian",
"perlin",
],
value="patchmatch",
type="value",
)
model_input = gr.Image(label="Input", type="pil", image_mode="RGBA")
proceed_button = gr.Button("Proceed", elem_id="proceed")
model_output = gr.Image(label="Output")
is_nsfw = gr.JSON()
proceed_button.click(
fn=run_outpaint,
inputs=[
model_input,
sd_prompt,
sd_strength,
sd_guidance,
sd_step,
init_mode,
],
outputs=[model_output, is_nsfw],
)
blocks.config['dev_mode'] = False
# S3_HOST = "https://s3.amazonaws.com"
# @app.get("/uploads/{path:path}")
# async def uploads(path: str, response: Response):
# async with httpx.AsyncClient() as client:
# proxy = await client.get(f"{S3_HOST}/{path}")
# response.body = proxy.content
# response.status_code = proxy.status_code
# response.headers['Access-Control-Allow-Origin'] = '*'
# response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, OPTIONS'
# response.headers['Access-Control-Allow-Headers'] = 'Authorization, Content-Type'
# response.headers['Cache-Control'] = 'max-age=31536000'
# return response
@app.post('/uploadfile/')
async def create_upload_file(background_tasks: BackgroundTasks, file: UploadFile):
contents = await file.read()
file_size = len(contents)
if not 0 < file_size < 2E+06:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail='Supported file size is less than 2 MB'
)
file_type = magic.from_buffer(contents, mime=True)
if file_type.lower() not in FILE_TYPES:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f'Unsupported file type {file_type}. Supported types are {FILE_TYPES}'
)
temp_file = io.BytesIO()
temp_file.write(contents)
temp_file.seek(0)
s3.upload_fileobj(Fileobj=temp_file, Bucket=AWS_S3_BUCKET_NAME, Key="uploads/" +
file.filename, ExtraArgs={"ContentType": file.content_type, "CacheControl": "max-age=31536000"})
temp_file.close()
return {"url": f'https://d26smi9133w0oo.cloudfront.net/uploads/{file.filename}', "filename": file.filename}
app = gr.mount_gradio_app(app, blocks, "/gradio",
gradio_api_url="http://0.0.0.0:7860/gradio/")
app.mount("/", StaticFiles(directory="../static", html=True), name="static")
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860,
log_level="debug", reload=False)
|