Spaces:
Running
Running
File size: 8,589 Bytes
be293db 08a65ff 6356cbd 160959f be293db cca065e 160959f be293db cca065e be293db 6356cbd be293db 08a65ff be293db 08a65ff be293db cca065e be293db cca065e be293db 08a65ff b468d19 08a65ff be293db 08a65ff be293db 08a65ff be293db 08a65ff be293db 08a65ff be293db 08a65ff be293db 08a65ff be293db 08a65ff be293db 08a65ff be293db 08a65ff be293db 08a65ff be293db 08a65ff be293db 08a65ff be293db cca065e 08a65ff be293db 08a65ff be293db 08a65ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import json
import os
from dataclasses import asdict
from glob import glob
import datasets
import streamlit as st
import yaml
st.set_page_config(
page_title="HF Dataset Tagging App",
page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
layout="wide",
initial_sidebar_state="auto",
)
task_set = json.load(open("task_set.json"))
license_set = json.load(open("license_set.json"))
language_set_restricted = json.load(open("language_set.json"))
language_set = json.load(open("language_set_full.json"))
multilinguality_set = {
"monolingual": "contains a single language",
"multilingual": "contains multiple languages",
"translation": "contains translated or aligned text",
"other": "other type of language distribution",
}
creator_set = {
"language": [
"found",
"crowdsourced",
"expert-generated",
"machine-generated",
"other",
],
"annotations": [
"found",
"crowdsourced",
"expert-generated",
"machine-generated",
"no-annotation",
"other",
],
}
########################
## Helper functions
########################
def load_existing_tags():
has_tags = {}
for fname in glob("saved_tags/*/*/tags.json"):
_, did, cid, _ = fname.split(os.sep)
has_tags[did] = has_tags.get(did, {})
has_tags[did][cid] = fname
return has_tags
def new_pre_loaded():
return {
"task_categories": [],
"task_ids": [],
"multilinguality": [],
"languages": [],
"language_creators": [],
"annotations_creators": [],
"source_datasets": [],
"size_categories": [],
"licenses": [],
}
pre_loaded = new_pre_loaded()
existing_tag_sets = load_existing_tags()
all_dataset_ids = list(existing_tag_sets.keys())
########################
## Dataset selection
########################
st.sidebar.markdown(
"""
# HuggingFace Dataset Tagger
This app aims to make it easier to add structured tags to the datasets present in the library.
Each configuration requires its own tasks, as these often correspond to distinct sub-tasks. However, we provide the opportunity
to pre-load the tag sets from another dataset or configuration to avoid too much redundancy.
The tag sets are saved in JSON format, but you can print a YAML version in the right-most column to copy-paste to the config README.md
### Preloading an existing tag set
You can load an existing tag set to get started if you want.
Beware that clicking pre-load will overwrite the current state!
"""
)
qp = st.experimental_get_query_params()
preload = qp.get("preload_dataset", list())
did_index = 2
if len(preload) == 1 and preload[0] in all_dataset_ids:
did_qp, *_ = preload
cid_qp = next(iter(existing_tag_sets[did_qp]))
pre_loaded = json.load(open(existing_tag_sets[did_qp][cid_qp]))
did_index = all_dataset_ids.index(did_qp)
did = st.sidebar.selectbox(label="Choose dataset to load tag set from", options=all_dataset_ids, index=did_index)
if len(existing_tag_sets[did]) > 1:
cid = st.sidebar.selectbox(
label="Choose config to load tag set from",
options=list(existing_tag_sets[did].keys()),
index=0,
)
else:
cid = next(iter(existing_tag_sets[did].keys()))
if st.sidebar.button("pre-load this tag set"):
pre_loaded = json.load(open(existing_tag_sets[did][cid]))
st.experimental_set_query_params(preload_dataset=did)
if st.sidebar.button("flush state"):
pre_loaded = new_pre_loaded()
st.experimental_set_query_params()
leftcol, _, rightcol = st.beta_columns([12, 1, 12])
pre_loaded["languages"] = list(set(pre_loaded["languages"]))
leftcol.markdown("### Supported tasks")
task_categories = leftcol.multiselect(
"What categories of task does the dataset support?",
options=list(task_set.keys()),
default=pre_loaded["task_categories"],
format_func=lambda tg: f"{tg} : {task_set[tg]['description']}",
)
task_specifics = []
for tg in task_categories:
task_specs = leftcol.multiselect(
f"What specific *{tg}* tasks does the dataset support?",
options=task_set[tg]["options"],
default=[ts for ts in pre_loaded["task_ids"] if ts in task_set[tg]["options"]],
)
if "other" in task_specs:
other_task = st.text_input(
"You selected 'other' task. Please enter a short hyphen-separated description for the task:",
value="my-task-description",
)
st.write(f"Registering {tg}-other-{other_task} task")
task_specs[task_specs.index("other")] = f"{tg}-other-{other_task}"
task_specifics += task_specs
leftcol.markdown("### Languages")
multilinguality = leftcol.multiselect(
"Does the dataset contain more than one language?",
options=list(multilinguality_set.keys()),
default=pre_loaded["multilinguality"],
format_func=lambda m: f"{m} : {multilinguality_set[m]}",
)
if "other" in multilinguality:
other_multilinguality = st.text_input(
"You selected 'other' type of multilinguality. Please enter a short hyphen-separated description:",
value="my-multilinguality",
)
st.write(f"Registering other-{other_multilinguality} multilinguality")
multilinguality[multilinguality.index("other")] = f"other-{other_multilinguality}"
languages = leftcol.multiselect(
"What languages are represented in the dataset?",
options=list(language_set.keys()),
default=pre_loaded["languages"],
format_func=lambda m: f"{m} : {language_set[m]}",
)
leftcol.markdown("### Dataset creators")
language_creators = leftcol.multiselect(
"Where does the text in the dataset come from?",
options=creator_set["language"],
default=pre_loaded["language_creators"],
)
annotations_creators = leftcol.multiselect(
"Where do the annotations in the dataset come from?",
options=creator_set["annotations"],
default=pre_loaded["annotations_creators"],
)
licenses = leftcol.multiselect(
"What licenses is the dataset under?",
options=list(license_set.keys()),
default=pre_loaded["licenses"],
format_func=lambda l: f"{l} : {license_set[l]}",
)
if "other" in licenses:
other_license = st.text_input(
"You selected 'other' type of license. Please enter a short hyphen-separated description:",
value="my-license",
)
st.write(f"Registering other-{other_license} license")
licenses[licenses.index("other")] = f"other-{other_license}"
# link ro supported datasets
pre_select_ext_a = []
if "original" in pre_loaded["source_datasets"]:
pre_select_ext_a += ["original"]
if any([p.startswith("extended") for p in pre_loaded["source_datasets"]]):
pre_select_ext_a += ["extended"]
extended = leftcol.multiselect(
"Does the dataset contain original data and/or was it extended from other datasets?",
options=["original", "extended"],
default=pre_select_ext_a,
)
source_datasets = ["original"] if "original" in extended else []
if "extended" in extended:
pre_select_ext_b = [p.split("|")[1] for p in pre_loaded["source_datasets"] if p.startswith("extended")]
extended_sources = leftcol.multiselect(
"Which other datasets does this one use data from?",
options=all_dataset_ids + ["other"],
default=pre_select_ext_b,
)
if "other" in extended_sources:
other_extended_sources = st.text_input(
"You selected 'other' dataset. Please enter a short hyphen-separated description:",
value="my-dataset",
)
st.write(f"Registering other-{other_extended_sources} dataset")
extended_sources[extended_sources.index("other")] = f"other-{other_extended_sources}"
source_datasets += [f"extended|{src}" for src in extended_sources]
size_category = leftcol.selectbox(
"What is the size category of the dataset?",
options=["unknown", "n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "n>1M"],
index=["unknown", "n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "n>1M"].index(
(pre_loaded.get("size_categories") or ["unknown"])[0]
),
)
########################
## Show results
########################
rightcol.markdown(
f"""
### Finalized tag set
```yaml
{yaml.dump({
"task_categories": task_categories,
"task_ids": task_specifics,
"multilinguality": multilinguality,
"languages": languages,
"language_creators": language_creators,
"annotations_creators": annotations_creators,
"source_datasets": source_datasets,
"size_categories": size_category,
"licenses": licenses,
})}
```
"""
)
|