Spaces:
Runtime error
Runtime error
File size: 5,477 Bytes
fc95975 4bbaeac f924b14 4bbaeac ffdfff7 fc95975 f622ed0 ffdfff7 f924b14 ffdfff7 f924b14 ffdfff7 f924b14 ffdfff7 f924b14 c8f45af ffdfff7 f924b14 c8f45af f924b14 c8f45af ffdfff7 f924b14 c8f45af f924b14 a446a8b c8f45af a446a8b c8f45af a446a8b c8f45af a446a8b c8f45af a446a8b c8f45af a446a8b c8f45af 5d392e6 ffdfff7 c8f45af f924b14 c8f45af ffdfff7 f924b14 c8f45af f924b14 ffdfff7 96e0b3b f924b14 ffdfff7 f924b14 96e0b3b f924b14 64ce142 ffdfff7 f924b14 ffdfff7 f924b14 ffdfff7 f924b14 ffdfff7 f924b14 ffdfff7 a446a8b ffdfff7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
import json
import pandas as pd
import math
import numpy as np
import matplotlib.pyplot as plt
def visualization(path_data, lang, num_docs, num_docs_for_words):
with open(path_data) as json_file:
data = json.load(json_file)
num_docs = min(num_docs, len(data))
st.title(f"{num_docs} {lang} documents from Oscar with their stats.")
sentences = [doc["text"].split(" ") for doc in data[:num_docs_for_words]]
words = set([word for sentence in sentences for word in sentence])
words_data = [{"len_word": len(word), "word": word} for word in words]
words_data = pd.DataFrame(words_data)
data = data[:num_docs]
data = pd.DataFrame(data)
columns = list(data)
keys = []
values = {}
st.header("Filtering based on document content")
if "special_%" in columns:
special_ratio = st.sidebar.slider(
"% filtered by special characters ratio", 0.0, 50.0, 0.0, step=0.1
)
cutoff_index = max(0, math.floor((100 - special_ratio) * len(data.index) / 100) - 1)
special_cutoff = np.partition(data["special_%"], cutoff_index)[cutoff_index]
st.sidebar.text(f"No docs with <{special_cutoff:.1f}% special chars")
keys.append(("special_%", special_cutoff, True))
if "stop_%" in columns:
stop_ratio = st.sidebar.slider(
"% filtered by stop word ratio", 0.0, 50.0, 0.0, step=0.1
)
cutoff_index = max(0, math.floor(stop_ratio * len(data.index) / 100) - 1)
stop_cutoff = np.partition(data["stop_%"], cutoff_index)[cutoff_index]
st.sidebar.text(f"No docs with >{stop_cutoff:.2f}% stop words")
keys.append(("stop_%", stop_cutoff, False))
@st.cache(suppress_st_warning=True)
def recalculate_flagged_words(file):
def flagged_word_ratio(text: str, flagged_word_list):
return len([word for word in text.split() if word.lower().strip() in flagged_word_list]) / len(text.split())
flagged_word_list = [word.decode().strip() for word in file.readlines()]
flagged_word_ratios = [flagged_word_ratio(text, flagged_word_list) * 100 for text in data["text"]]
data["flagged_%"] = flagged_word_ratios
flagged_word_file = st.sidebar.file_uploader("Upload your own list of flagged words (1 word per line)")
if "flagged_%" in columns:
flagged_ratio = st.sidebar.slider(
"% filtered by flagged words ratio", 0.0, 50.0, 0.0, step=0.1
)
flagged_index = max(0, math.floor((100 - flagged_ratio) * len(data.index) / 100) - 1)
flagged_cutoff = np.partition(data["flagged_%"], flagged_index)[flagged_index]
st.sidebar.text(f"No docs with >{flagged_cutoff:.2f}% flagged words")
keys.append(("flagged_%", flagged_cutoff, True))
if "perplexity" in columns:
ppl_ratio = st.sidebar.slider(
"% filtered by perplexity", 0.0, 50.0, 0.0, step=0.1
)
ppl_index = max(0, math.floor((100 - ppl_ratio) * len(data.index) / 100) - 1)
ppl_cutoff = np.partition(data["perplexity"], ppl_index)[ppl_index]
st.sidebar.text(f"No docs with >{ppl_cutoff:.0f} perplexity")
keys.append(("perplexity", ppl_cutoff, True))
cond = [
(data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff)
for key, cutoff, max_cutoff in keys
]
cond = np.all(cond, axis=0)
data_not_keep = data.loc[np.invert(cond)]
st.subheader(f"Filtered data: {np.invert(cond).sum()} docs")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(data_not_keep)
data_keep = data.loc[cond]
st.subheader(f"Kept data: {cond.sum()} docs")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(data_keep)
# def plot_hist(dataframe, key, num_bins=50):
# st.subheader(" ".join(key.split("_")))
# hist_values = dataframe[key].values
# max_range = np.max(hist_values)
# hist_values = np.histogram(hist_values, bins=num_bins, range=(0, max_range))[0]
# st.bar_chart(hist_values)
# st.markdown(f"Each bin is of size: {max_range/num_bins}.")
# for key, _, _ in keys:
# plot_hist(data, key)
st.header("Filtering links and concatenated words")
max_len_word = int(np.max(words_data["len_word"])) + 1
cutoff_word = st.sidebar.slider("Word length cutoff", 0, max_len_word, max_len_word)
cond_words = words_data["len_word"] <= cutoff_word
words_keep = words_data.loc[cond_words]
st.subheader(f"Words that we keep (for {num_docs_for_words} documents)")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(words_keep)
words_not_keep = words_data.loc[np.invert(cond_words)]
st.subheader(f"Words that are thrown away (for {num_docs_for_words} documents)")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(words_not_keep)
st.header("Download data")
with open(path_data) as json_file:
btn = st.download_button(
label="Download data as json",
data=json_file,
file_name="data.json",
)
path_data = "./en_examples_with_stats_ldnoob.json"
lang = "English"
num_docs = 5000
num_docs_for_words = 500
visualization(path_data, lang, num_docs, num_docs_for_words)
|