Spaces:
Runtime error
Runtime error
File size: 2,235 Bytes
ddfcbfd fea1e17 b1334ad 1b8bf98 bc874f6 1b8bf98 bc874f6 1b8bf98 d27ee2d 1b8bf98 a959427 1b8bf98 a2bf36a 1b8bf98 d27ee2d 2c7bae6 39f82d8 4f7405e 39f82d8 d27ee2d 39f82d8 4f7405e 1b8bf98 d27ee2d 39f82d8 d27ee2d 1b8bf98 b1f819b 1b8bf98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
import tensorflow as tf
# Create a Gradio App using Blocks
with gr.Blocks() as demo:
gr.Markdown(
"""
# AI/ML Playground
"""
)
with gr.Accordion("Click for Instructions:"):
gr.Markdown(
"""
* Train/Eval will setup, train, and evaluate the base model
""")
def modelTraining(img):
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
predictions = model(x_train[:1]).numpy()
tf.nn.softmax(predictions).numpy()
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
loss_fn(y_train[:1], predictions).numpy()
model.compile(optimizer='adam',
loss=loss_fn,
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
print "Test accuracy: ", test_acc
# Define any necessary preprocessing steps for the image input here
probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
# Make a prediction using the model
prediction = probability_model.predict(img)
# Postprocess the prediction and return it
return np.argmax(predictions[0])
# Creates the Gradio interface objects
with gr.Row():
with gr.Column(scale=2):
image_data = gr.Image(label="Upload Image", type="numpy")
with gr.Column(scale=1):
model_performance = gr.Text(label="Model Performance", interactive=False)
model_prediction = gr.Text(label="Model Prediction", interactive=False)
image_data.change(modelTraining, image_data, model_prediction)
# creates a local web server
# if share=True creates a public
# demo on huggingface.c
demo.launch(share=False) |