Spaces:
Runtime error
Runtime error
File size: 2,893 Bytes
ddfcbfd fea1e17 e9d74ac b1334ad 1b8bf98 bc874f6 1b8bf98 e9d74ac 1b8bf98 e9d74ac d27ee2d e9d74ac 1b8bf98 e9d74ac 1b8bf98 e9d74ac 1b8bf98 e9d74ac 1b8bf98 e9d74ac 1b8bf98 e9d74ac 1b8bf98 e9d74ac 1b8bf98 e9d74ac 1b8bf98 a2bf36a 1b8bf98 459ba45 2c7bae6 39f82d8 e9d74ac 4f7405e e9d74ac 39f82d8 d27ee2d 39f82d8 4f7405e 1b8bf98 d27ee2d 39f82d8 d27ee2d 1b8bf98 b1f819b 1b8bf98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import gradio as gr
import tensorflow as tf
import numpy as np
import os
import PIL
import PIL.Image
# Create a Gradio App using Blocks
with gr.Blocks() as demo:
gr.Markdown(
"""
# AI/ML Playground
"""
)
with gr.Accordion("Click for Instructions:"):
gr.Markdown(
"""
* uploading an image will setup, train, and evaluate the base model
""")
# Train, evaluate and test a ML
# image classification model for
# clothes images
def modelTraining(img):
# clothing dataset
mnist = tf.keras.datasets.mnist
#split the training data in to a train/test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# create the neural net layers
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
#make a post-training predition on the
#training set data
predictions = model(x_train[:1]).numpy()
# converts the logits into a probability
tf.nn.softmax(predictions).numpy()
#create and train the loss function
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
loss_fn(y_train[:1], predictions).numpy()
# compile the model with the loss function
model.compile(optimizer='adam',
loss=loss_fn,
metrics=['accuracy'])
# train the model - 5 runs
# evaluate the model on the test set
model.fit(x_train, y_train, epochs=5)
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
print("Test accuracy: ", test_acc)
# Define any necessary preprocessing steps for the image input here
# the image can be passed as a PIL or numpy
# create the final model for production
probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
# Make a prediction using the model
prediction = probability_model.predict(img)
# Postprocess the prediction and return it
return np.argmax(predictions[0])
# Creates the Gradio interface objects
with gr.Row():
with gr.Column(scale=2):
image_data = gr.Image(label="Upload Image", type="numpy")
with gr.Column(scale=1):
model_performance = gr.Text(label="Model Performance", interactive=False)
model_prediction = gr.Text(label="Model Prediction", interactive=False)
image_data.change(modelTraining, image_data, model_prediction)
# creates a local web server
# if share=True creates a public
# demo on huggingface.c
demo.launch(share=False) |