Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
# Create a Gradio App using Blocks | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# AI/ML Playground | |
""" | |
) | |
with gr.Accordion("Click for Instructions:"): | |
gr.Markdown( | |
""" | |
* Train/Eval will setup, train, and evaluate the base model | |
""") | |
def modelTraining(): | |
print("TensorFlow version:", tf.__version__) | |
mnist = tf.keras.datasets.mnist | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
x_train, x_test = x_train / 255.0, x_test / 255.0 | |
model = tf.keras.models.Sequential([ | |
tf.keras.layers.Flatten(input_shape=(28, 28)), | |
tf.keras.layers.Dense(128, activation='relu'), | |
tf.keras.layers.Dropout(0.2), | |
tf.keras.layers.Dense(10) | |
]) | |
predictions = model(x_train[:1]).numpy() | |
print(predictions) | |
tf.nn.softmax(predictions).numpy() | |
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) | |
loss_fn(y_train[:1], predictions).numpy() | |
model.compile(optimizer='adam', | |
loss=loss_fn, | |
metrics=['accuracy']) | |
model.fit(x_train, y_train, epochs=5) | |
model.evaluate(x_test, y_test, verbose=2) | |
return "done" | |
# Creates the Gradio interface objects | |
with gr.Row(): | |
with gr.Column(scale=1): | |
submit_btn = gr.Button(value="Train/Eval") | |
with gr.Column(scale=2): | |
model_data = gr.Text(label="Model Results", interactive=False) | |
submit_btn.click(modelTraining, [], model_data) | |
# creates a local web server | |
# if share=True creates a public | |
# demo on huggingface.co | |
demo.launch(share=False) |