hwberry2 commited on
Commit
e0191a5
·
1 Parent(s): ba0af48

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -60,15 +60,17 @@ with gr.Blocks() as demo:
60
  # evaluate the model on the test set
61
  model.fit(x_train, y_train, epochs=5)
62
  test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
 
 
63
 
64
- print("Test accuracy: ", test_acc)
65
-
66
- # Define any necessary preprocessing steps for the image input here
67
- # the image can be passed as a PIL or numpy
68
  # create the final model for production
69
  probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
70
 
71
- # Normalize the pixel values
 
 
 
 
72
  # assuming image_array is your input image array of shape (552, 3)
73
  resized_array = np.resize(img, (28, 28)) # resize the array to (28, 28)
74
  input_array = np.expand_dims(resized_array, axis=0) # add an extra dimension to represent the batch size
@@ -85,7 +87,6 @@ with gr.Blocks() as demo:
85
  with gr.Column(scale=2):
86
  image_data = gr.Image(label="Upload Image", type="numpy")
87
  with gr.Column(scale=1):
88
- model_performance = gr.Text(label="Model Performance", interactive=False)
89
  model_prediction = gr.Text(label="Model Prediction", interactive=False)
90
  image_data.change(modelTraining, image_data, model_prediction)
91
 
 
60
  # evaluate the model on the test set
61
  model.fit(x_train, y_train, epochs=5)
62
  test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
63
+ post_train_results = f"Test accuracy: {test_acc} Test Loss: {test_loss}"
64
+ print(post_train_results)
65
 
 
 
 
 
66
  # create the final model for production
67
  probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
68
 
69
+ # Input image pre-processing before submission to the model
70
+ # the image can be passed as a PIL or numpy
71
+
72
+ # Normalize the pixel values?
73
+ print(f"Input image shape: {img.shape} Dimensions: {img.ndim} Array Element: {img[0]} ***********************************************************************")
74
  # assuming image_array is your input image array of shape (552, 3)
75
  resized_array = np.resize(img, (28, 28)) # resize the array to (28, 28)
76
  input_array = np.expand_dims(resized_array, axis=0) # add an extra dimension to represent the batch size
 
87
  with gr.Column(scale=2):
88
  image_data = gr.Image(label="Upload Image", type="numpy")
89
  with gr.Column(scale=1):
 
90
  model_prediction = gr.Text(label="Model Prediction", interactive=False)
91
  image_data.change(modelTraining, image_data, model_prediction)
92