File size: 1,726 Bytes
b3b0738
 
 
 
 
 
 
 
 
 
5ea2a93
b3b0738
 
 
efbb364
1ef1929
b3b0738
efbb364
b3b0738
 
bb1f1b6
b5d3f3a
 
 
 
9a48a5d
b3b0738
 
 
21bcfae
b3b0738
 
 
 
 
 
 
 
98c64ba
b3b0738
 
 
 
 
 
 
 
 
 
 
 
1ef1929
 
98c64ba
1ef1929
 
98c64ba
b3b0738
 
 
99c65a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import gradio as gr
import openai
from gtts import gTTS


openai.api_key = os.environ["OPEN_AI_KEY"]



def transcribe(audio):    
    audio_file = open(audio, "rb")    
    # Call the transcribe method with the file-like object
    transcript = openai.Audio.transcribe("whisper-1", audio_file)
    
    return transcript["text"]

def botResponse(user_input):    
    response = openai.ChatCompletion.create(
      model="gpt-3.5-turbo",
      #messages=user_input)
      messages=[
                {"role": "system", "content": "You are a therapist. Respond in less than 5 sentences."},
                {"role": "user", "content": user_input}
               ]
    )
  
    system_message = response["choices"][0]["message"]["content"]

    return system_message

def giveVoice(bot_message):
    myobj = gTTS(text=bot_message)
    myobj.save("temp.mp3")

    dir = os.getcwd()
    new_path = os.path.join(dir, "temp.mp3")

    return new_path





with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            user_audio = gr.Audio(source="microphone", type="filepath", label="Input Phrase")
            submit_btn = gr.Button(value="Transcribe") 
        with gr.Column():
            #gpt_response = gr.Audio(label="Voice Response")
            user_transcript = gr.Text(label="User Transcript")
            gpt_transcript = gr.Text(label="GPT Transcript")
            gpt_voice = gr.Audio(label="Voice Response")
    submit_btn.click(transcribe, inputs=user_audio, outputs=user_transcript)
    user_transcript.change(botResponse, inputs=user_transcript, outputs=gpt_transcript)
    gpt_transcript.change(giveVoice, inputs=gpt_transcript, outputs=gpt_voice)
    
    

demo.launch(share=False)