import os import gradio as gr import openai from gtts import gTTS openai.api_key = os.environ["OPEN_AI_KEY"] def transcribe(audio): audio_file = open(audio, "rb") # Call the transcribe method with the file-like object transcript = openai.Audio.transcribe("whisper-1", audio_file) return transcript["text"] def botResponse(user_input): response = openai.ChatCompletion.create( model="gpt-3.5-turbo", #messages=user_input) messages=[ {"role": "system", "content": "You are a therapist. Respond in less than 5 sentences."}, {"role": "user", "content": user_input} ] ) system_message = response["choices"][0]["message"]["content"] return system_message def giveVoice(bot_message): myobj = gTTS(text=bot_message) myobj.save("temp.mp3") dir = os.getcwd() new_path = os.path.join(dir, "temp.mp3") return new_path def keepLog(gpt): return "gpt" with gr.Blocks() as demo: with gr.Row(): with gr.Column(): user_audio = gr.Audio(source="microphone", type="filepath", label="Input Phrase") submit_btn = gr.Button(value="Transcribe") with gr.Column(): user_transcript = gr.Text(label="User Transcript") gpt_transcript = gr.Text(label="GPT Transcript") gpt_voice = gr.Audio(label="Voice Response") chat_log = gr.Text(label="Chat Log") submit_btn.click(transcribe, inputs=user_audio, outputs=user_transcript) user_transcript.change(botResponse, inputs=user_transcript, outputs=gpt_transcript) gpt_transcript.change(giveVoice, inputs=gpt_transcript, outputs=gpt_voice) gpt_voice.change(keepLog, inputs=user_transcript, outputs=chat_log) demo.launch(share=False)