File size: 4,532 Bytes
6e8417e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e47e2e6
 
6e8417e
327f5da
 
 
 
6e8417e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1c2dd1
 
6e8417e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pickle
import sys

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

sys.path.insert(0, 'projected_gan')

TITLE = 'autonomousvision/projected_gan'
DESCRIPTION = '''This is a demo for https://github.com/autonomousvision/projected_gan.

Expected execution time on Hugging Face Spaces: 1s
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/projected_gan/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
- size: 256x256
- seed: 0-99
### Art painting
![Art painting samples]({SAMPLE_IMAGE_DIR}/art_painting.jpg)
### Bedroom
![Bedroom samples]({SAMPLE_IMAGE_DIR}/bedroom.jpg)
### Church
![Church samples]({SAMPLE_IMAGE_DIR}/church.jpg)
### Cityscapes
![Cityscapes samples]({SAMPLE_IMAGE_DIR}/cityscapes.jpg)
### CLEVR
![CLEVR samples]({SAMPLE_IMAGE_DIR}/clevr.jpg)
### FFHQ
![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg)
### Flowers
![Flowers samples]({SAMPLE_IMAGE_DIR}/flowers.jpg)
### Landscape
![Landscape samples]({SAMPLE_IMAGE_DIR}/landscape.jpg)
### Pokemon
![Pokemon samples]({SAMPLE_IMAGE_DIR}/pokemon.jpg)

<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.projected_gan" alt="visitor badge"/></center>
'''

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    return parser.parse_args()


def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
    return torch.from_numpy(
        np.random.RandomState(seed).randn(1,
                                          z_dim).astype(np.float32)).to(device)


@torch.inference_mode()
def generate_image(model_name: str, seed: int, truncation_psi: float,
                   model_dict: dict[str, nn.Module],
                   device: torch.device) -> np.ndarray:
    model = model_dict[model_name]
    seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))

    z = generate_z(model.z_dim, seed, device)
    label = torch.zeros([1, model.c_dim], device=device)

    out = model(z, label, truncation_psi=truncation_psi)
    out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
    return out[0].cpu().numpy()


def load_model(model_name: str, device: torch.device) -> nn.Module:
    path = hf_hub_download('hysts/projected_gan',
                           f'models/{model_name}.pkl',
                           use_auth_token=TOKEN)
    with open(path, 'rb') as f:
        model = pickle.load(f)['G_ema']
    model.eval()
    model.to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.z_dim)).to(device)
        label = torch.zeros([1, model.c_dim], device=device)
        model(z, label)
    return model


def main():
    args = parse_args()
    device = torch.device(args.device)

    model_names = [
        'art_painting',
        'church',
        'bedroom',
        'cityscapes',
        'clevr',
        'ffhq',
        'flowers',
        'landscape',
        'pokemon',
    ]

    model_dict = {name: load_model(name, device) for name in model_names}

    func = functools.partial(generate_image,
                             model_dict=model_dict,
                             device=device)
    func = functools.update_wrapper(func, generate_image)

    gr.Interface(
        func,
        [
            gr.inputs.Radio(
                model_names, type='value', default='pokemon', label='Model'),
            gr.inputs.Number(default=0, label='Seed'),
            gr.inputs.Slider(
                0, 2, step=0.05, default=0.7, label='Truncation psi'),
        ],
        gr.outputs.Image(type='numpy', label='Output'),
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()