Spaces:
Running
Running
File size: 4,532 Bytes
6e8417e e47e2e6 6e8417e 327f5da 6e8417e b1c2dd1 6e8417e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
sys.path.insert(0, 'projected_gan')
TITLE = 'autonomousvision/projected_gan'
DESCRIPTION = '''This is a demo for https://github.com/autonomousvision/projected_gan.
Expected execution time on Hugging Face Spaces: 1s
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/projected_gan/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
- size: 256x256
- seed: 0-99
### Art painting
![Art painting samples]({SAMPLE_IMAGE_DIR}/art_painting.jpg)
### Bedroom
![Bedroom samples]({SAMPLE_IMAGE_DIR}/bedroom.jpg)
### Church
![Church samples]({SAMPLE_IMAGE_DIR}/church.jpg)
### Cityscapes
![Cityscapes samples]({SAMPLE_IMAGE_DIR}/cityscapes.jpg)
### CLEVR
![CLEVR samples]({SAMPLE_IMAGE_DIR}/clevr.jpg)
### FFHQ
![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg)
### Flowers
![Flowers samples]({SAMPLE_IMAGE_DIR}/flowers.jpg)
### Landscape
![Landscape samples]({SAMPLE_IMAGE_DIR}/landscape.jpg)
### Pokemon
![Pokemon samples]({SAMPLE_IMAGE_DIR}/pokemon.jpg)
<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.projected_gan" alt="visitor badge"/></center>
'''
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(
np.random.RandomState(seed).randn(1,
z_dim).astype(np.float32)).to(device)
@torch.inference_mode()
def generate_image(model_name: str, seed: int, truncation_psi: float,
model_dict: dict[str, nn.Module],
device: torch.device) -> np.ndarray:
model = model_dict[model_name]
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.z_dim, seed, device)
label = torch.zeros([1, model.c_dim], device=device)
out = model(z, label, truncation_psi=truncation_psi)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
def load_model(model_name: str, device: torch.device) -> nn.Module:
path = hf_hub_download('hysts/projected_gan',
f'models/{model_name}.pkl',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = pickle.load(f)['G_ema']
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(device)
label = torch.zeros([1, model.c_dim], device=device)
model(z, label)
return model
def main():
args = parse_args()
device = torch.device(args.device)
model_names = [
'art_painting',
'church',
'bedroom',
'cityscapes',
'clevr',
'ffhq',
'flowers',
'landscape',
'pokemon',
]
model_dict = {name: load_model(name, device) for name in model_names}
func = functools.partial(generate_image,
model_dict=model_dict,
device=device)
func = functools.update_wrapper(func, generate_image)
gr.Interface(
func,
[
gr.inputs.Radio(
model_names, type='value', default='pokemon', label='Model'),
gr.inputs.Number(default=0, label='Seed'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi'),
],
gr.outputs.Image(type='numpy', label='Output'),
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|