import gradio as gr import os import io import requests import json from IPython.display import Image, display, HTML from PIL import Image import base64 from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) model_id = os.getenv("model_id") hf_api_key = os.getenv("hf_api_key") api_url =f"https://api-inference.huggingface.co/models/{model_id}" def get_completion(inputs, parameters=None, ENDPOINT_URL=api_url): headers = { "Authorization": f"Bearer {hf_api_key}", "Content-Type": "application/json" } data = { "inputs": inputs } if parameters is not None: data.update({"parameters": parameters}) response = requests.request("POST", ENDPOINT_URL, headers=headers, data=json.dumps(data) ) return json.loads(response.content.decode("utf-8")) def summarize(input): output = get_completion(input) return output[0]['summary_text'] gr.close_all() demo = gr.Interface(fn=summarize, inputs=[gr.Textbox(label="Text to summarize", lines=6)], outputs=[gr.Textbox(label="Result", lines=3)], title="开源文本总结AI Assistant", description="Input the contents you want the AI Assistant to summarize for you." ) demo.launch()