import streamlit as st from llama_index import VectorStoreIndex, SimpleDirectoryReader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from llama_index import LangchainEmbedding, ServiceContext from llama_index import StorageContext, load_index_from_storage from llama_index import LLMPredictor #from transformers import HuggingFaceHub from langchain import HuggingFaceHub #from streamlit.components.v1 import html from pathlib import Path from time import sleep import random import string import os from dotenv import load_dotenv load_dotenv() st.set_page_config(page_title="Open AI Doc-Chat Assistant", layout="wide") st.subheader("Open AI Doc-Chat Assistant: Life Enhancing with AI!") #css_file = "main.css" #with open(css_file) as f: # st.markdown("".format(f.read()), unsafe_allow_html=True) HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") # Load documents from a directory documents = SimpleDirectoryReader('data').load_data() embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')) llm_predictor = LLMPredictor(HuggingFaceHub(repo_id="HuggingFaceH4/starchat-beta", model_kwargs={"min_length":100, "max_new_tokens":1024, "do_sample":True, "temperature":0.2,"top_k":50, "top_p":0.95, "eos_token_id":49155})) service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embed_model) def generate_random_string(length): letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(length)) random_string = generate_random_string(20) new_index = VectorStoreIndex.from_documents( documents, service_context=service_context, ) new_index.storage_context.persist("random_string") storage_context = StorageContext.from_defaults(persist_dir="random_string") loadedindex = load_index_from_storage(storage_context=storage_context, service_context=service_context) query_engine = loadedindex.as_query_engine() while True: try: question = st.text_input("Enter your query here:") print("Your query:\n"+question) if question.strip().isspace(): st.write("Query Empty. Please enter valid query first.") break elif question == "": # st.write("Query Empty. Please enter valid query first.") break elif question.strip() == "": st.write("Query Empty. Please enter valid query first.") break elif question.isspace(): st.write("Query Empty. Please enter valid query first.") break elif question=="exit": break elif question!="": initial_response = query_engine.query(question) temp_ai_response=str(initial_response) final_ai_response=temp_ai_response.partition('<|end|>')[0] print("AI Response:\n"+final_ai_response) st.write("AI Response:\n\n"+final_ai_response) except Exception as e: st.stop()