iShare commited on
Commit
bd1d3c9
1 Parent(s): 907615b

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +16 -3
main.py CHANGED
@@ -13,6 +13,7 @@ from langchain import PromptTemplate, LLMChain
13
  from langchain import HuggingFaceHub
14
  from langchain.document_loaders import TextLoader
15
  import torch
 
16
 
17
  import requests
18
  import random
@@ -110,6 +111,7 @@ async def pdf_file_qa_process(user_question: str, request: Request, file_to_proc
110
  texts=temp_texts
111
  initial_embeddings=get_embeddings(temp_texts)
112
  db_embeddings = torch.FloatTensor(initial_embeddings)
 
113
  print("db_embeddings created...")
114
 
115
  #question = var_query.query
@@ -117,14 +119,19 @@ async def pdf_file_qa_process(user_question: str, request: Request, file_to_proc
117
  print("API Call Query Received: "+question)
118
  q_embedding=get_embeddings(question)
119
  final_q_embedding = torch.FloatTensor(q_embedding)
120
- from sentence_transformers.util import semantic_search
 
 
 
121
  hits = semantic_search(final_q_embedding, torch.FloatTensor(db_embeddings), top_k=5)
 
 
 
122
 
123
  page_contents = []
124
  for i in range(len(hits[0])):
125
  page_content = texts[hits[0][i]['corpus_id']]
126
- page_contents.append(page_content)
127
-
128
  print(page_contents)
129
 
130
  temp_page_contents=str(page_contents)
@@ -136,8 +143,14 @@ async def pdf_file_qa_process(user_question: str, request: Request, file_to_proc
136
 
137
  loader = TextLoader(file_path, encoding="utf-8")
138
  loaded_documents = loader.load()
 
139
 
 
 
140
  temp_ai_response = chain({"input_documents": loaded_documents, "question": question}, return_only_outputs=False)
 
 
 
141
 
142
  initial_ai_response=temp_ai_response['output_text']
143
 
 
13
  from langchain import HuggingFaceHub
14
  from langchain.document_loaders import TextLoader
15
  import torch
16
+ from sentence_transformers.util import semantic_search
17
 
18
  import requests
19
  import random
 
111
  texts=temp_texts
112
  initial_embeddings=get_embeddings(temp_texts)
113
  db_embeddings = torch.FloatTensor(initial_embeddings)
114
+ print(db_embeddings)
115
  print("db_embeddings created...")
116
 
117
  #question = var_query.query
 
119
  print("API Call Query Received: "+question)
120
  q_embedding=get_embeddings(question)
121
  final_q_embedding = torch.FloatTensor(q_embedding)
122
+ print(final_q_embedding)
123
+
124
+ print("Semantic Similarity Search Starts...")
125
+ start_1 = timeit.default_timer()
126
  hits = semantic_search(final_q_embedding, torch.FloatTensor(db_embeddings), top_k=5)
127
+ end_1 = timeit.default_timer()
128
+ print("Semantic Similarity Search Ends...")
129
+ print(f'Semantic Similarity Search共耗时: @ {end_1 - start_1}')
130
 
131
  page_contents = []
132
  for i in range(len(hits[0])):
133
  page_content = texts[hits[0][i]['corpus_id']]
134
+ page_contents.append(page_content)
 
135
  print(page_contents)
136
 
137
  temp_page_contents=str(page_contents)
 
143
 
144
  loader = TextLoader(file_path, encoding="utf-8")
145
  loaded_documents = loader.load()
146
+ print(loaded_documents)
147
 
148
+ print("LLM Chain Starts...")
149
+ start_2 = timeit.default_timer()
150
  temp_ai_response = chain({"input_documents": loaded_documents, "question": question}, return_only_outputs=False)
151
+ end_2 = timeit.default_timer()
152
+ print("LLM Chain Ends...")
153
+ print(f'LLM Chain共耗时: @ {end_2 - start_2}')
154
 
155
  initial_ai_response=temp_ai_response['output_text']
156