Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -13,6 +13,7 @@ from langchain import PromptTemplate, LLMChain
|
|
13 |
from langchain import HuggingFaceHub
|
14 |
from langchain.document_loaders import TextLoader
|
15 |
import torch
|
|
|
16 |
|
17 |
import requests
|
18 |
import random
|
@@ -110,6 +111,7 @@ async def pdf_file_qa_process(user_question: str, request: Request, file_to_proc
|
|
110 |
texts=temp_texts
|
111 |
initial_embeddings=get_embeddings(temp_texts)
|
112 |
db_embeddings = torch.FloatTensor(initial_embeddings)
|
|
|
113 |
print("db_embeddings created...")
|
114 |
|
115 |
#question = var_query.query
|
@@ -117,14 +119,19 @@ async def pdf_file_qa_process(user_question: str, request: Request, file_to_proc
|
|
117 |
print("API Call Query Received: "+question)
|
118 |
q_embedding=get_embeddings(question)
|
119 |
final_q_embedding = torch.FloatTensor(q_embedding)
|
120 |
-
|
|
|
|
|
|
|
121 |
hits = semantic_search(final_q_embedding, torch.FloatTensor(db_embeddings), top_k=5)
|
|
|
|
|
|
|
122 |
|
123 |
page_contents = []
|
124 |
for i in range(len(hits[0])):
|
125 |
page_content = texts[hits[0][i]['corpus_id']]
|
126 |
-
page_contents.append(page_content)
|
127 |
-
|
128 |
print(page_contents)
|
129 |
|
130 |
temp_page_contents=str(page_contents)
|
@@ -136,8 +143,14 @@ async def pdf_file_qa_process(user_question: str, request: Request, file_to_proc
|
|
136 |
|
137 |
loader = TextLoader(file_path, encoding="utf-8")
|
138 |
loaded_documents = loader.load()
|
|
|
139 |
|
|
|
|
|
140 |
temp_ai_response = chain({"input_documents": loaded_documents, "question": question}, return_only_outputs=False)
|
|
|
|
|
|
|
141 |
|
142 |
initial_ai_response=temp_ai_response['output_text']
|
143 |
|
|
|
13 |
from langchain import HuggingFaceHub
|
14 |
from langchain.document_loaders import TextLoader
|
15 |
import torch
|
16 |
+
from sentence_transformers.util import semantic_search
|
17 |
|
18 |
import requests
|
19 |
import random
|
|
|
111 |
texts=temp_texts
|
112 |
initial_embeddings=get_embeddings(temp_texts)
|
113 |
db_embeddings = torch.FloatTensor(initial_embeddings)
|
114 |
+
print(db_embeddings)
|
115 |
print("db_embeddings created...")
|
116 |
|
117 |
#question = var_query.query
|
|
|
119 |
print("API Call Query Received: "+question)
|
120 |
q_embedding=get_embeddings(question)
|
121 |
final_q_embedding = torch.FloatTensor(q_embedding)
|
122 |
+
print(final_q_embedding)
|
123 |
+
|
124 |
+
print("Semantic Similarity Search Starts...")
|
125 |
+
start_1 = timeit.default_timer()
|
126 |
hits = semantic_search(final_q_embedding, torch.FloatTensor(db_embeddings), top_k=5)
|
127 |
+
end_1 = timeit.default_timer()
|
128 |
+
print("Semantic Similarity Search Ends...")
|
129 |
+
print(f'Semantic Similarity Search共耗时: @ {end_1 - start_1}')
|
130 |
|
131 |
page_contents = []
|
132 |
for i in range(len(hits[0])):
|
133 |
page_content = texts[hits[0][i]['corpus_id']]
|
134 |
+
page_contents.append(page_content)
|
|
|
135 |
print(page_contents)
|
136 |
|
137 |
temp_page_contents=str(page_contents)
|
|
|
143 |
|
144 |
loader = TextLoader(file_path, encoding="utf-8")
|
145 |
loaded_documents = loader.load()
|
146 |
+
print(loaded_documents)
|
147 |
|
148 |
+
print("LLM Chain Starts...")
|
149 |
+
start_2 = timeit.default_timer()
|
150 |
temp_ai_response = chain({"input_documents": loaded_documents, "question": question}, return_only_outputs=False)
|
151 |
+
end_2 = timeit.default_timer()
|
152 |
+
print("LLM Chain Ends...")
|
153 |
+
print(f'LLM Chain共耗时: @ {end_2 - start_2}')
|
154 |
|
155 |
initial_ai_response=temp_ai_response['output_text']
|
156 |
|