Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
st.title("βββ ββ β β β β β βποΈββοΈ benchbench-Leaderboard ποΈββοΈ") | |
import pandas as pd | |
from bat import Tester, Config, Benchmark, Reporter | |
from bat.utils import get_holistic_benchmark | |
cfg = Config( | |
exp_to_run="example", | |
n_models_taken_list=[0], | |
model_select_strategy_list=["random"], | |
n_exps=10, | |
# reference_data_path="data/combined_holistic.csv", | |
) | |
newbench_name = "livebench" | |
new_bench_agg_name = f"{newbench_name}_mwr" | |
tester = Tester(cfg=cfg) | |
# models_for_benchmark_scoring = tester.fetch_reference_models_names( | |
# reference_benchmark=get_holistic_benchmark(), n_models=20 | |
# ) | |
newbench = Benchmark( | |
pd.read_csv(f"assets/{newbench_name}.csv"), | |
data_source=newbench_name, | |
) | |
# newbench.add_aggragete(new_col_name=new_bench_agg_name) | |
# newbench_agreements = tester.all_vs_all_agreement_testing(newbench) | |
reporter = Reporter() | |
# reporter.draw_agreements( | |
# newbench_agreements, ref_sources=[newbench_name], scenario_sources=[newbench_name] | |
# ) | |
holistic = get_holistic_benchmark() | |
holistic.add_aggragete(new_col_name="aggregate", agg_source_name="holistic") | |
allbench = newbench.extend(holistic) | |
allbench.clear_repeated_scenarios(source_to_keep=newbench_name) | |
def run_load(): | |
return tester.all_vs_all_agreement_testing(allbench) | |
all_agreements = run_load() | |
observed_scenario = "arena_elo" # "livebench_lb" | |
blacklist_sources = [] # "livebench" | |
z_score = reporter.get_z_score(all_agreements, observed_scenario, blacklist_sources) | |
st.write(f"zscore of {observed_scenario}: {z_score}") | |
# df = pd.read_csv("BAT_w_arena_10_random.csv") | |
# df = ( | |
# ( | |
# df.rename( | |
# columns={ | |
# "z_score": "Z_Score", | |
# "benchmark": "Benchmark", | |
# } | |
# ).drop( | |
# columns=[ | |
# "Unnamed: 0", | |
# "z_test_pass", | |
# ] | |
# ) | |
# ) | |
# .sort_values("Z_Score", ascending=False) | |
# .query( | |
# 'Benchmark!="Aggregate" and Benchmark!="MAGI" and Benchmark!="Alpaca(v2, len adj)" and Benchmark!="GPT4All"' | |
# ) | |
# ) | |
# df.replace( | |
# { | |
# "Arena Elo": "LMSys Arena", | |
# "Hugging-6": "HF OpenLLM", | |
# "Alpaca(v2)": "Alpaca v2", | |
# "Alpaca(v1)": "Alpaca v1", | |
# "EQ-Bench(v2)": "EQ-Bench v2", | |
# }, | |
# inplace=True, | |
# ) | |
# col1, col2, col3 = st.columns(3) | |
# with col1: | |
# st.header("β β β β β β β β Agree") | |
# st.dataframe(df.query("Z_Score>=0"), hide_index=True) | |
# with col2: | |
# st.header("β ββ β Disagree") | |
# st.dataframe(df.query("Z_Score<0").sort_values("Z_Score"), hide_index=True) | |
# with col3: | |
# st.header("β ββ β Configs") | |
# # st.selectbox(label="Reference Benchmarks", options=["LMSys Arena"]) | |
# options = st.multiselect( | |
# "Reference Benchmarks", | |
# ["LMSys Arena", "Open Compass", "Yellow", "Red", "Blue"], | |
# ["LMSys Arena", "Open Compass"], | |
# ) | |
# st.selectbox(label="# models compared", options=[20]) | |
# st.selectbox(label="Model Select Strategy", options=["Random"]) | |
# st.write("βββββββ") | |
# st.button("Upload a new benchmark") | |