Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import regex as re
|
3 |
+
import torch
|
4 |
+
import nltk
|
5 |
+
import pandas as pd
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
+
from nltk.tokenize import sent_tokenize
|
8 |
+
import plotly.express as px
|
9 |
+
import time
|
10 |
+
import tqdm
|
11 |
+
|
12 |
+
nltk.download('punkt')
|
13 |
+
|
14 |
+
# Define the device (GPU or CPU)
|
15 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
# Define the model and tokenizer
|
18 |
+
checkpoint = "ieq/IEQ-BERT"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint).to(device)
|
20 |
+
model = AutoModelForSequenceClassification.from_pretrained(checkpoint).to(device)
|
21 |
+
|
22 |
+
|
23 |
+
# Define the function for preprocessing text
|
24 |
+
def prep_text(text):
|
25 |
+
clean_sents = [] # append clean con sentences
|
26 |
+
sent_tokens = str(text).split('.')
|
27 |
+
for sent_token in sent_tokens:
|
28 |
+
word_tokens = [str(word_token).strip().lower() for word_token in sent_token.split()]
|
29 |
+
word_tokens = [word_token for word_token in word_tokens if word_token not in punctuations]
|
30 |
+
clean_sents.append(' '.join((word_tokens)))
|
31 |
+
joined_clean_sents = '. '.join(clean_sents).strip(' ')
|
32 |
+
return joined_clean_sents
|
33 |
+
|
34 |
+
|
35 |
+
# APP INFO
|
36 |
+
def app_info():
|
37 |
+
check = """
|
38 |
+
Please go to either the "Single-Text-Prediction" or "Multi-Text-Prediction" tab to analyse your text.
|
39 |
+
"""
|
40 |
+
|
41 |
+
return check
|
42 |
+
|
43 |
+
|
44 |
+
# Create Gradio interface for app info
|
45 |
+
iface1 = gr.Interface(
|
46 |
+
fn=app_info, inputs=None, outputs=['text'], title="General-Infomation",
|
47 |
+
description='''
|
48 |
+
This app, powered by the IEQ-BERT model (sadickam/sdg-classification-bert), is for automating the classification of text concerning
|
49 |
+
with respect to indoor environmetal quality (IEQ). IEQ refers to the quality of the indoor air, lighting,
|
50 |
+
temperature, and acoustics within a building, as well as the overall comfort and well-being of its occupants. It encompasses various
|
51 |
+
factors that can impact the health, productivity, and satisfaction of people who spend time indoors, such as office workers, students,
|
52 |
+
patients, and residents. This app assigns five labels to any given text and a text may be assigned one or more labels. The five labels include
|
53 |
+
the following:
|
54 |
+
- Acoustic
|
55 |
+
- Indoor air quality (IAQ)
|
56 |
+
- No IEQ (label assigned when no IEQ is defected)
|
57 |
+
- Thermal
|
58 |
+
- Visual
|
59 |
+
|
60 |
+
Because IEQ-BERT is capable of assigning one or more labels to a text, it is possible that the returned prediction like
|
61 |
+
(Acoustic_No IEQ) or (NO IEQ_Thermal). These multiple predictions that include "No IEQ" may suggest lack of contextual
|
62 |
+
clarity in the text and need manual review to affirm label.
|
63 |
+
|
64 |
+
This app has two analysis modules summarised below:
|
65 |
+
- Single-Text-Prediction - Analyses text pasted in a text box and return IEQ prediction.
|
66 |
+
- Multi-Text-Prediction - Analyses multiple rows of texts in an uploaded CSV file and returns a downloadable CSV file with IEQ prediction for each row of text.
|
67 |
+
|
68 |
+
This app runs on a free server and may therefore not be suitable for analysing large CSV files.
|
69 |
+
If you need assistance with analysing large CSV, do get in touch using the contact information in the Contact section.
|
70 |
+
|
71 |
+
<h3>Contact</h3>
|
72 |
+
<p>We would be happy to receive your feedback regarding this app. If you would also like to collaborate with us to explore some use cases for the model
|
73 |
+
powering this app, we are happy to hear from you.</p>
|
74 |
+
|
75 |
+
Dr Abdul-Manan Sadick - [email protected]
|
76 |
+
Dr Giorgia Chinazzo - [email protected]
|
77 |
+
''')
|
78 |
+
|
79 |
+
|
80 |
+
# SINGLE TEXT
|
81 |
+
# Define the prediction function
|
82 |
+
def predict_single_text(text):
|
83 |
+
"""
|
84 |
+
Predicts the IEQ labels for a single text.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
text (str): The text to be analyzed.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
top_prediction (dict): A dictionary containing the top predicted IEQ labels and their corresponding probabilities.
|
91 |
+
fig (plotly.graph_objs.Figure): A bar chart showing the likelihood of each IEQ label.
|
92 |
+
"""
|
93 |
+
# Preprocess the input text
|
94 |
+
cleaned_text = prep_text(text)
|
95 |
+
|
96 |
+
# Check if the text is empty after preprocessing
|
97 |
+
if cleaned_text == "":
|
98 |
+
raise gr.Error('This model needs some text input to return a prediction')
|
99 |
+
|
100 |
+
# Tokenize the preprocessed text
|
101 |
+
tokenized_text = tokenizer(cleaned_text, return_tensors="pt", truncation=True, max_length=512, padding=True).to(
|
102 |
+
device)
|
103 |
+
|
104 |
+
# Make predictions
|
105 |
+
with torch.no_grad():
|
106 |
+
outputs = model(**tokenized_text)
|
107 |
+
logits = outputs.logits
|
108 |
+
|
109 |
+
# Calculate the probabilities
|
110 |
+
probabilities = torch.sigmoid(logits).squeeze()
|
111 |
+
|
112 |
+
# Define the threshold for prediction
|
113 |
+
threshold = 0.3
|
114 |
+
|
115 |
+
# Get the predicted labels
|
116 |
+
predicted_labels_ = (probabilities.cpu().numpy() > threshold).tolist()
|
117 |
+
|
118 |
+
# Define the list of IEQ labels
|
119 |
+
label_list = [
|
120 |
+
'Acoustic',
|
121 |
+
'Indoor air quality',
|
122 |
+
'No IEQ',
|
123 |
+
'Thermal',
|
124 |
+
'Visual'
|
125 |
+
]
|
126 |
+
|
127 |
+
# Map the predicted labels to their corresponding names
|
128 |
+
predicted_labels = [label_list[i] for i in range(len(label_list)) if predicted_labels_[i] == 1]
|
129 |
+
|
130 |
+
# Get the probabilities of the predicted labels
|
131 |
+
predicted_prob = [round(a_, 3) for a_ in probabilities.cpu().numpy().tolist() if a_ > threshold]
|
132 |
+
|
133 |
+
# Create a dictionary containing the top predicted IEQ labels and their corresponding probabilities
|
134 |
+
top_prediction = (dict(zip(predicted_labels, predicted_prob)))
|
135 |
+
|
136 |
+
# Create a bar chart showing the likelihood of each IEQ label
|
137 |
+
# Make dataframe for plotly bar chart
|
138 |
+
u, v = zip(*dict(zip(label_list, probabilities.cpu().numpy().tolist())).items())
|
139 |
+
m = list(u)
|
140 |
+
n = list(v)
|
141 |
+
df2 = pd.DataFrame()
|
142 |
+
df2['IEQ'] = m
|
143 |
+
df2['Likelihood'] = n
|
144 |
+
|
145 |
+
# plot graph of predictions
|
146 |
+
fig = px.bar(df2, x="Likelihood", y="IEQ", orientation="h")
|
147 |
+
|
148 |
+
fig.update_layout(
|
149 |
+
# barmode='stack',
|
150 |
+
template='seaborn', font=dict(family="Arial", size=12, color="black"),
|
151 |
+
autosize=True,
|
152 |
+
# width=800,
|
153 |
+
# height=500,
|
154 |
+
xaxis_title="Likelihood of IEQ",
|
155 |
+
yaxis_title="Indoor environmental quality (IEQ)",
|
156 |
+
# legend_title="Topics"
|
157 |
+
)
|
158 |
+
|
159 |
+
fig.update_xaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=12))
|
160 |
+
fig.update_yaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=12))
|
161 |
+
fig.update_annotations(font_size=12)
|
162 |
+
|
163 |
+
return top_prediction, fig
|
164 |
+
|
165 |
+
# Create Gradio interface for single text
|
166 |
+
|
167 |
+
|
168 |
+
iface2 = gr.Interface(fn=predict_single_text,
|
169 |
+
inputs=gr.Textbox(lines=7, label="Paste or type text here"),
|
170 |
+
outputs=[gr.Label(label="Top Prediction", show_label=True),
|
171 |
+
gr.Plot(label="Likelihood of all labels", show_label=True)],
|
172 |
+
title="Single Text Prediction",
|
173 |
+
article="**Note:** The quality of model predictions may depend on the quality of information provided."
|
174 |
+
)
|
175 |
+
|
176 |
+
|
177 |
+
# UPLOAD CSV
|
178 |
+
# Define the prediction function
|
179 |
+
def predict_from_csv(file, column_name, progress=gr.Progress()):
|
180 |
+
"""
|
181 |
+
Predicts the IEQ labels for a list of texts in a CSV file.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
file (str): The path to the CSV file.
|
185 |
+
column_name (str): The name of the column containing the text to be analyzed.
|
186 |
+
progress (gr.Progress): A progress bar to display the analysis progress.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
fig (plotly.graph_objs.Figure): A histogram showing the frequency of each IEQ label.
|
190 |
+
output_csv (gr.File): A downloadable CSV file containing the predictions.
|
191 |
+
"""
|
192 |
+
# Read the CSV file
|
193 |
+
df_docs = pd.read_csv(file)
|
194 |
+
|
195 |
+
# Check if the specified column exists
|
196 |
+
if column_name not in df_docs.columns:
|
197 |
+
raise gr.Error(f"The column '{column_name}' does not exist in the uploaded CSV file.")
|
198 |
+
|
199 |
+
# Extract the text list from the specified column
|
200 |
+
text_list = df_docs[column_name].tolist()
|
201 |
+
|
202 |
+
# Define the list of IEQ labels
|
203 |
+
label_list = [
|
204 |
+
'Acoustic',
|
205 |
+
'Indoor air quality',
|
206 |
+
'No IEQ',
|
207 |
+
'Thermal',
|
208 |
+
'Visual'
|
209 |
+
]
|
210 |
+
|
211 |
+
# Initialize lists to store the predictions
|
212 |
+
labels_predicted = []
|
213 |
+
prediction_scores = []
|
214 |
+
|
215 |
+
# Preprocess text and make predictions
|
216 |
+
for text_input in progress.tqdm(text_list, desc="Analysing data"):
|
217 |
+
# Sleep to avoid rate limiting
|
218 |
+
time.sleep(0.02)
|
219 |
+
|
220 |
+
# Preprocess the text
|
221 |
+
cleaned_text = prep_text(text_input)
|
222 |
+
|
223 |
+
# Tokenize the text
|
224 |
+
tokenized_text = tokenizer(cleaned_text, return_tensors="pt", truncation=True, max_length=512, padding=True).to(
|
225 |
+
device)
|
226 |
+
|
227 |
+
# Make predictions
|
228 |
+
with torch.no_grad():
|
229 |
+
outputs = model(**tokenized_text)
|
230 |
+
logits = outputs.logits
|
231 |
+
|
232 |
+
# Calculate the probabilities
|
233 |
+
predictions = torch.sigmoid(logits).squeeze()
|
234 |
+
|
235 |
+
# Define the threshold for prediction
|
236 |
+
threshold = 0.3
|
237 |
+
|
238 |
+
# Get the predicted labels
|
239 |
+
predicted_labels_ = (predictions.cpu().numpy() > threshold).tolist()
|
240 |
+
|
241 |
+
# Map the predicted labels to their corresponding names
|
242 |
+
predicted_labels = [label_list[i] for i in range(len(label_list)) if predicted_labels_[i] == 1]
|
243 |
+
|
244 |
+
# Get the probabilities of the predicted labels
|
245 |
+
prediction_score = [round(a_, 3) for a_ in predictions.cpu().numpy().tolist() if a_ > threshold]
|
246 |
+
|
247 |
+
# Append the predictions to the lists
|
248 |
+
labels_predicted.append(predicted_labels)
|
249 |
+
prediction_scores.append(prediction_score)
|
250 |
+
|
251 |
+
# Append the predictions to the DataFrame
|
252 |
+
df_docs['IEQ_predicted'] = labels_predicted
|
253 |
+
df_docs['prediction_scores'] = prediction_scores
|
254 |
+
|
255 |
+
# Save the predictions to a CSV file
|
256 |
+
df_docs.to_csv('IEQ_predictions.csv')
|
257 |
+
|
258 |
+
# Create a downloadable CSV file
|
259 |
+
output_csv = gr.File(value='IEQ_predictions.csv', visible=True)
|
260 |
+
|
261 |
+
# Create a histogram showing the frequency of each IEQ label
|
262 |
+
fig = px.histogram(df_docs, y="IEQ_predicted")
|
263 |
+
fig.update_layout(
|
264 |
+
template='seaborn',
|
265 |
+
font=dict(family="Arial", size=12, color="black"),
|
266 |
+
autosize=True,
|
267 |
+
# width=800,
|
268 |
+
# height=500,
|
269 |
+
xaxis_title="IEQ counts",
|
270 |
+
yaxis_title="Indoor environmetal quality (IEQ)",
|
271 |
+
)
|
272 |
+
fig.update_xaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=12))
|
273 |
+
fig.update_yaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=12))
|
274 |
+
fig.update_annotations(font_size=12)
|
275 |
+
|
276 |
+
return fig, output_csv
|
277 |
+
|
278 |
+
|
279 |
+
# Define the input component
|
280 |
+
file_input = gr.File(label="Upload CSV file here", show_label=True, file_types=[".csv"])
|
281 |
+
column_name_input = gr.Textbox(label="Enter the column name containing the text to be analyzed", show_label=True)
|
282 |
+
|
283 |
+
# Create the Gradio interface
|
284 |
+
iface3 = gr.Interface(fn=predict_from_csv,
|
285 |
+
inputs=[file_input, column_name_input],
|
286 |
+
outputs=[gr.Plot(label='Frequency of IEQs', show_label=True),
|
287 |
+
gr.File(label='Download output CSV', show_label=True)],
|
288 |
+
title="Multi-text Prediction (CVS)",
|
289 |
+
description='**NOTE:** Please enter the column name containing the text to be analyzed.')
|
290 |
+
|
291 |
+
# Create a tabbed interface
|
292 |
+
demo = gr.TabbedInterface(interface_list=[iface1, iface2, iface3],
|
293 |
+
tab_names=["General-App-Info", "Single-Text-Prediction", "Multi-Text-Prediction (CSV)"],
|
294 |
+
title="Indoor Environmetal Quality (IEQ) Text Classifier App",
|
295 |
+
theme='soft'
|
296 |
+
)
|
297 |
+
|
298 |
+
# Launch the interface
|
299 |
+
demo.queue().launch()
|