Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import time | |
os.system('cls||clear') | |
from diffusers import AutoPipelineForInpainting | |
from transformers import pipeline | |
from ultralytics import YOLO | |
from PIL import Image | |
import numpy as np | |
import torch | |
import base64 | |
from io import BytesIO | |
import gradio as gr | |
from gradio import components | |
import difflib | |
# Constants | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Load | |
def image_to_base64(image: Image.Image): | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
return base64.b64encode(buffered.getvalue()).decode("utf-8") | |
def get_most_similar_string(target_string, string_array): | |
differ = difflib.Differ() | |
best_match = string_array[0] | |
best_match_ratio = 0 | |
for candidate_string in string_array: | |
similarity_ratio = difflib.SequenceMatcher(None, target_string, candidate_string).ratio() | |
if similarity_ratio > best_match_ratio: | |
best_match = candidate_string | |
best_match_ratio = similarity_ratio | |
return best_match | |
def loadModels(): | |
yoloModel=YOLO('yolov8x-seg.pt') | |
pipe =AutoPipelineForInpainting.from_pretrained( | |
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
).to("cuda") | |
image_captioner = pipeline("image-to-text", model="Abdou/vit-swin-base-224-gpt2-image-captioning", device=DEVICE) | |
#return gpt_model, gpt_tokenizer, gpt_params,yoloModel,pipe,image_captioner | |
return yoloModel,pipe,image_captioner | |
# Yolo | |
def getClasses(model,img1): | |
results = model([img1]) | |
out=[] | |
for r in results: | |
#im_array = r.plot(boxes=False,labels=False) # plot a BGR numpy array of predictions | |
im_array = r.plot() | |
out.append(r) | |
return r,im_array[..., ::-1],results | |
def getMasks(out): | |
allout={} | |
class_masks = {} | |
for a in out: | |
class_name = a['name'] | |
mask = a['img'] | |
if class_name in class_masks: | |
class_masks[class_name] = Image.fromarray( | |
np.maximum(np.array(class_masks[class_name]), np.array(mask)) | |
) | |
else: | |
class_masks[class_name] = mask | |
for class_name, mask in class_masks.items(): | |
allout[class_name]=mask | |
return allout | |
def joinClasses(classes): | |
i=0 | |
out=[] | |
for r in classes: | |
masks=r.masks | |
name0=r.names[int(r.boxes.cls.cpu().numpy()[0])] | |
mask1 = masks[0] | |
mask = mask1.data[0].cpu().numpy() | |
polygon = mask1.xy[0] | |
# Normalize the mask values to 0-255 if needed | |
mask_normalized = ((mask - mask.min()) * (255 / (mask.max() - mask.min()))).astype(np.uint8) | |
mask_img = Image.fromarray(mask_normalized, "L") | |
out.append({'name':name0,'img':mask_img}) | |
i+=1 | |
allMask=getMasks(out) | |
return allMask | |
def getSegments(yoloModel,img1): | |
classes,image,results1=getClasses(yoloModel,img1) | |
allMask=joinClasses(classes) | |
return allMask | |
# Gradio UI | |
def getDescript(image_captioner,img1): | |
base64_img = image_to_base64(img1) | |
caption = image_captioner(base64_img)[0]['generated_text'] | |
return caption | |
def rmGPT(caption,remove_class): | |
arstr=list(caption.split(' ')) | |
popular=get_most_similar_string(remove_class,arstr) | |
ind=arstr.index(popular) | |
new=[] | |
for i in range(len(arstr)): | |
if i not in list(range(ind-2,ind+3)): | |
new+=arstr[i] | |
return ' '.join(new) | |
# SDXL | |
def ChangeOBJ(sdxl_m,img1,response,mask1): | |
size = img1.size | |
image = sdxl_m(prompt=response, image=img1, mask_image=mask1).images[0] | |
return image.resize((size[0], size[1])) | |
yoloModel,sdxl,image_captioner=loadModels() | |
def full_pipeline(image, target): | |
img1 = Image.fromarray(image.astype('uint8'), 'RGB') | |
allMask=getSegments(yoloModel,img1) | |
tartget_to_remove=get_most_similar_string(target,list(allMask.keys())) | |
caption=getDescript(image_captioner,img1) | |
response=rmGPT(caption,tartget_to_remove) | |
mask1=allMask[tartget_to_remove] | |
remimg=ChangeOBJ(sdxl,img1,response,mask1) | |
return remimg,caption,response | |
iface = gr.Interface( | |
fn=full_pipeline, | |
inputs=[ | |
gr.Image(label="Upload Image"), | |
gr.Textbox(label="What to delete?"), | |
], | |
outputs=[ | |
gr.Image(label="Result Image", type="numpy"), | |
gr.Textbox(label="Caption"), | |
gr.Textbox(label="Message"), | |
], | |
live=False | |
) | |
iface.launch() |